José Luis Olloqui-Sariego , I. Márquez , Alejandra Guerra-Castellano , M. Molero , Miguel A. De la Rosa , Juan José Calvente , Irene Díaz-Moreno , Rafael Andreu
{"title":"Effect of electrostatic immobilization on the electrochemistry of human and horse cytochrome c","authors":"José Luis Olloqui-Sariego , I. Márquez , Alejandra Guerra-Castellano , M. Molero , Miguel A. De la Rosa , Juan José Calvente , Irene Díaz-Moreno , Rafael Andreu","doi":"10.1016/j.jelechem.2025.118975","DOIUrl":null,"url":null,"abstract":"<div><div>Protein film voltammetry is a sensitive tool to characterize the electron transfer properties of redox proteins in a variety of environments and conformational states. Here, a detailed voltammetric study aimed to explore the effect of electrostatic immobilization on the electron transfer thermodynamics and kinetics of adsorbed human- and horse- cytochrome <em>c</em> was carried out. For this purpose, the two cytochromes were adsorbed on thiol monolayers (SAM) with different immobilization strengths and donor–acceptor distances. While thermodynamic redox parameters do not seem to be affected by the monolayer thickness and charge density, electron transfer kinetics are significantly modulated by the protein immobilization strength. Stronger protein–SAM electrostatic interactions result in lower electron transfer rates in both non-adiabatic and friction kinetic regimes. This behavior is further characterized by smaller pre-exponential factors and activation enthalpies in Arrhenius type plots. These kinetic results in the physiologically relevant non-adiabatic electron transfer regime are shown to be consistent with the recently developed Matyushov’s theoretical formulation of protein electron transfer. Moreover, a comparison between the kinetic parameters of the two cytochrome variants supports the hypothesis that differences between their electron transfer rates originate in their structural flexibility to accommodate the conformational changes required to form the precursor complex between cytochrome and a negatively charged redox partner.</div></div>","PeriodicalId":355,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"981 ","pages":"Article 118975"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665725000487","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Protein film voltammetry is a sensitive tool to characterize the electron transfer properties of redox proteins in a variety of environments and conformational states. Here, a detailed voltammetric study aimed to explore the effect of electrostatic immobilization on the electron transfer thermodynamics and kinetics of adsorbed human- and horse- cytochrome c was carried out. For this purpose, the two cytochromes were adsorbed on thiol monolayers (SAM) with different immobilization strengths and donor–acceptor distances. While thermodynamic redox parameters do not seem to be affected by the monolayer thickness and charge density, electron transfer kinetics are significantly modulated by the protein immobilization strength. Stronger protein–SAM electrostatic interactions result in lower electron transfer rates in both non-adiabatic and friction kinetic regimes. This behavior is further characterized by smaller pre-exponential factors and activation enthalpies in Arrhenius type plots. These kinetic results in the physiologically relevant non-adiabatic electron transfer regime are shown to be consistent with the recently developed Matyushov’s theoretical formulation of protein electron transfer. Moreover, a comparison between the kinetic parameters of the two cytochrome variants supports the hypothesis that differences between their electron transfer rates originate in their structural flexibility to accommodate the conformational changes required to form the precursor complex between cytochrome and a negatively charged redox partner.
期刊介绍:
The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied.
Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.