Predictive modeling of hydrogen production and methane conversion from biomass-derived methane using machine learning and optimisation techniques

Adegboyega Bolu Ehinmowo, Bright Ikechukwu Nwaneri, Joseph Oluwatobi Olaide
{"title":"Predictive modeling of hydrogen production and methane conversion from biomass-derived methane using machine learning and optimisation techniques","authors":"Adegboyega Bolu Ehinmowo,&nbsp;Bright Ikechukwu Nwaneri,&nbsp;Joseph Oluwatobi Olaide","doi":"10.1016/j.nxener.2024.100229","DOIUrl":null,"url":null,"abstract":"<div><div>The growing demand for cleaner and more efficient energy solutions has necessitated the development of biomass conversion techniques for hydrogen production. Thermocatalytic methane decomposition produces hydrogen and solid carbon directly from methane without CO₂ emission. However, there is the need to optimise this process for better efficiency and improved hydrogen production from biomass sources. In this study, the integration of various machine learning algorithms with Bayesian optimisation, firefly algorithm, Levenberg-Marquardt, and differential evolution techniques were investigated for hydrogen production via thermocatalytic methane decomposition. The key process parameters studied include calcination temperature (450–600<!--> <!-->°C), time of calcination (3–8 h), specific surface area (5.4–249 m²/g), and pore volume (0.03–0.48 cm³/g); reduction temperature (500–700<!--> <!-->°C), time of reduction (1–5 h), and catalyst weight (0.05–1.00 g). The Bayesian-optimized CatBoost regressor model, with an R² of 96.3% and an RMSE of 0.064 showed the best performance. For the prediction of methane conversion, the Support Vector Regressor (SVR) model optimised with Firefly showed the best performance among other models with an R² value of 95.5% and root mean squared error (RMSE) of 0.070. CatBoost regressor predicted hydrogen yield of 87% close to the actual yield of 86%. The predicted methane conversion using the firefly-optimized support vector machine regressor was 72%, with the actual conversion being 68%. Model-to-feature relationship studies showed that catalyst weight and calcination time were the strongest predictors of hydrogen yield and methane conversion volume. The study hence established the great opportunity of integration of machine learning models with optimisation techniques in attempts to improve the prediction of hydrogen yield and methane conversion in processes for hydrogen production.</div></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"7 ","pages":"Article 100229"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X24001340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The growing demand for cleaner and more efficient energy solutions has necessitated the development of biomass conversion techniques for hydrogen production. Thermocatalytic methane decomposition produces hydrogen and solid carbon directly from methane without CO₂ emission. However, there is the need to optimise this process for better efficiency and improved hydrogen production from biomass sources. In this study, the integration of various machine learning algorithms with Bayesian optimisation, firefly algorithm, Levenberg-Marquardt, and differential evolution techniques were investigated for hydrogen production via thermocatalytic methane decomposition. The key process parameters studied include calcination temperature (450–600 °C), time of calcination (3–8 h), specific surface area (5.4–249 m²/g), and pore volume (0.03–0.48 cm³/g); reduction temperature (500–700 °C), time of reduction (1–5 h), and catalyst weight (0.05–1.00 g). The Bayesian-optimized CatBoost regressor model, with an R² of 96.3% and an RMSE of 0.064 showed the best performance. For the prediction of methane conversion, the Support Vector Regressor (SVR) model optimised with Firefly showed the best performance among other models with an R² value of 95.5% and root mean squared error (RMSE) of 0.070. CatBoost regressor predicted hydrogen yield of 87% close to the actual yield of 86%. The predicted methane conversion using the firefly-optimized support vector machine regressor was 72%, with the actual conversion being 68%. Model-to-feature relationship studies showed that catalyst weight and calcination time were the strongest predictors of hydrogen yield and methane conversion volume. The study hence established the great opportunity of integration of machine learning models with optimisation techniques in attempts to improve the prediction of hydrogen yield and methane conversion in processes for hydrogen production.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Voltage estimation of layered cathode materials LiMO2 (M=Al, Mn, Co, Ni, Cu, Zn) for lithium-ion batteries by using Compton profiles Enhanced p-doping and efficiency in organic solar cells using Mg and Pd ions at the HTL/PTB7 interface Microbial methanotrophy: Methane capture to biomanufacturing of platform chemicals and fuels Energy flexibility and management software in building clusters: A comprehensive review Thermal management strategies for a portable double slope solar still with energy storage: An experimental study for enhancing the performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1