Halsey E. Ostergaard , Joshua D. Pribe , M. Tarik Hasib , Thomas Siegmund , Jamie J. Kruzic
{"title":"Crack growth in laser powder bed fusion fabricated alloy 718 at 650 °C under static and cyclic loading","authors":"Halsey E. Ostergaard , Joshua D. Pribe , M. Tarik Hasib , Thomas Siegmund , Jamie J. Kruzic","doi":"10.1016/j.ijfatigue.2025.108810","DOIUrl":null,"url":null,"abstract":"<div><div>The role of microstructure in influencing 650 °C crack growth behavior for laser powder bed fusion (LPBF) fabricated nickel alloy 718 was examined by applying two post-build heat treatments and comparing to wrought material. The first heat treatment (solution and ageing) retained the elongated grain structure along the build direction. The second used hot isostatic pressing (HIP) prior to the solution and aging treatment to mostly recrystallize the microstructure. At high cyclic frequency (30 Hz), crack growth was mixed transgranular and intergranualr and differences in the crack growth rates among samples were primary caused by grain size differences and corresponding transgranular crack path roughness. Under static loading or low frequency (0.1 Hz) cyclic loading, intergranular crack growth dominated. Without HIP, the LPBF material had highly anisotropic behavior with a high threshold for crack extension when the crack plane tried to cut across the elongated grain structure. After HIP, the LPBF fabricated material displayed excellent resistance to intergranular crack extension at both 0.1 Hz and constant applied load due to a large fraction of Σ3 special boundaries which are highly resistant to intergranular oxidation. The results suggest LPBF with HIP treatment can give a grain boundary engineered 718 microstructure for elevated temperature applications.</div></div>","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"193 ","pages":"Article 108810"},"PeriodicalIF":5.7000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142112325000076","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The role of microstructure in influencing 650 °C crack growth behavior for laser powder bed fusion (LPBF) fabricated nickel alloy 718 was examined by applying two post-build heat treatments and comparing to wrought material. The first heat treatment (solution and ageing) retained the elongated grain structure along the build direction. The second used hot isostatic pressing (HIP) prior to the solution and aging treatment to mostly recrystallize the microstructure. At high cyclic frequency (30 Hz), crack growth was mixed transgranular and intergranualr and differences in the crack growth rates among samples were primary caused by grain size differences and corresponding transgranular crack path roughness. Under static loading or low frequency (0.1 Hz) cyclic loading, intergranular crack growth dominated. Without HIP, the LPBF material had highly anisotropic behavior with a high threshold for crack extension when the crack plane tried to cut across the elongated grain structure. After HIP, the LPBF fabricated material displayed excellent resistance to intergranular crack extension at both 0.1 Hz and constant applied load due to a large fraction of Σ3 special boundaries which are highly resistant to intergranular oxidation. The results suggest LPBF with HIP treatment can give a grain boundary engineered 718 microstructure for elevated temperature applications.
期刊介绍:
Typical subjects discussed in International Journal of Fatigue address:
Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements)
Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading
Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions
Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions)
Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects
Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue
Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation)
Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering
Smart materials and structures that can sense and mitigate fatigue degradation
Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.