In-field monitoring of ground-nesting insect aggregations using a scaleable multi-camera system

IF 5.8 2区 环境科学与生态学 Q1 ECOLOGY Ecological Informatics Pub Date : 2025-01-18 DOI:10.1016/j.ecoinf.2025.103004
Daniela Calvus , Karoline Wueppenhorst , Ralf Schlösser , Felix Klaus , Ulrich Schwanecke , Henri Greil
{"title":"In-field monitoring of ground-nesting insect aggregations using a scaleable multi-camera system","authors":"Daniela Calvus ,&nbsp;Karoline Wueppenhorst ,&nbsp;Ralf Schlösser ,&nbsp;Felix Klaus ,&nbsp;Ulrich Schwanecke ,&nbsp;Henri Greil","doi":"10.1016/j.ecoinf.2025.103004","DOIUrl":null,"url":null,"abstract":"<div><div>Insects provide essential ecosystem services, but are threatened by multiple anthropogenic stressors. Observing insect populations and behaviour is crucial to gain a better understanding of species’ interactions, and their responses to different stressors and conservation measures. However, the observation of insects can be challenging, especially, when observing large scale aggregations of ground nesting insects. Here, many individuals of the same species nest close together and interact with each other making the simultaneous observation difficult.</div><div>Camera based motion detection and neural networks have recently emerged for insect observations. They have the potential to make insect monitoring continuous and more precise, as well as more cost-efficient, compared to more traditional methods, such as manual observation or trapping.</div><div>We are presenting an automated multi-camera observation system for aggregations of ground-nesting insects. The system has been tested and improved over two seasons observing an aggregation of the ground-nesting bee species <em>Andrena vaga</em> Panzer, 1799 and is to our knowledge the first system with which long-term observation of an aggregation of ground-nesting insects has been conducted. It offers the following main advantages over existing systems:</div><div>The system is adaptable to different observation projects and able to detect insects of different sizes and shapes (e.g. parasites of <em>Andrena vaga</em>, or bumblebees) scaling the monitored area through height adjustments. Images from multiple cameras are stitched into an overview image with minimal overlap. The system can be used under different weather and environmental conditions (winter and summer, outdoor and laboratory). By only storing imagery if the detected motion in front of the camera is likely originated from an insect, it reduces post-processing work and required data storage capacity. In observing the natural environment, no attraction mechanism is employed, allowing for the monitoring of the insects’ natural behaviour. Our tests confirmed the capability of the system with motion detection reducing manual observation time of the <em>Andrena vaga</em> aggregation by 92.2<!--> <!-->% providing new insights into their interactions and behaviour.</div></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":"86 ","pages":"Article 103004"},"PeriodicalIF":5.8000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Informatics","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574954125000135","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Insects provide essential ecosystem services, but are threatened by multiple anthropogenic stressors. Observing insect populations and behaviour is crucial to gain a better understanding of species’ interactions, and their responses to different stressors and conservation measures. However, the observation of insects can be challenging, especially, when observing large scale aggregations of ground nesting insects. Here, many individuals of the same species nest close together and interact with each other making the simultaneous observation difficult.
Camera based motion detection and neural networks have recently emerged for insect observations. They have the potential to make insect monitoring continuous and more precise, as well as more cost-efficient, compared to more traditional methods, such as manual observation or trapping.
We are presenting an automated multi-camera observation system for aggregations of ground-nesting insects. The system has been tested and improved over two seasons observing an aggregation of the ground-nesting bee species Andrena vaga Panzer, 1799 and is to our knowledge the first system with which long-term observation of an aggregation of ground-nesting insects has been conducted. It offers the following main advantages over existing systems:
The system is adaptable to different observation projects and able to detect insects of different sizes and shapes (e.g. parasites of Andrena vaga, or bumblebees) scaling the monitored area through height adjustments. Images from multiple cameras are stitched into an overview image with minimal overlap. The system can be used under different weather and environmental conditions (winter and summer, outdoor and laboratory). By only storing imagery if the detected motion in front of the camera is likely originated from an insect, it reduces post-processing work and required data storage capacity. In observing the natural environment, no attraction mechanism is employed, allowing for the monitoring of the insects’ natural behaviour. Our tests confirmed the capability of the system with motion detection reducing manual observation time of the Andrena vaga aggregation by 92.2 % providing new insights into their interactions and behaviour.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecological Informatics
Ecological Informatics 环境科学-生态学
CiteScore
8.30
自引率
11.80%
发文量
346
审稿时长
46 days
期刊介绍: The journal Ecological Informatics is devoted to the publication of high quality, peer-reviewed articles on all aspects of computational ecology, data science and biogeography. The scope of the journal takes into account the data-intensive nature of ecology, the growing capacity of information technology to access, harness and leverage complex data as well as the critical need for informing sustainable management in view of global environmental and climate change. The nature of the journal is interdisciplinary at the crossover between ecology and informatics. It focuses on novel concepts and techniques for image- and genome-based monitoring and interpretation, sensor- and multimedia-based data acquisition, internet-based data archiving and sharing, data assimilation, modelling and prediction of ecological data.
期刊最新文献
Improved digital mapping of soil texture using the kernel temperature–vegetation dryness index and adaptive boosting Suitability of the Amazonas region for beekeeping and its future distribution under climate change scenarios Understanding the ecological impacts of vertical urban growth in mountainous regions Soil moisture dominates gross primary productivity variation during severe droughts in Central Asia Mapping spatiotemporal mortality patterns in spruce mountain forests using Sentinel-2 data and environmental factors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1