Clean fishing: Construction of prediction model for high-catch Antarctic krill (Euphausia superba) fishing grounds based on deep learning and dynamic sliding window methods

IF 5.8 2区 环境科学与生态学 Q1 ECOLOGY Ecological Informatics Pub Date : 2025-01-27 DOI:10.1016/j.ecoinf.2025.103047
Haibin Han , Bohui Jiang , Hongliang Huang , Yang Li , Jianghua Sui , Guoqing Zhao , Yuhan Wang , Heng Zhang , Shenglong Yang , Yongchuang Shi
{"title":"Clean fishing: Construction of prediction model for high-catch Antarctic krill (Euphausia superba) fishing grounds based on deep learning and dynamic sliding window methods","authors":"Haibin Han ,&nbsp;Bohui Jiang ,&nbsp;Hongliang Huang ,&nbsp;Yang Li ,&nbsp;Jianghua Sui ,&nbsp;Guoqing Zhao ,&nbsp;Yuhan Wang ,&nbsp;Heng Zhang ,&nbsp;Shenglong Yang ,&nbsp;Yongchuang Shi","doi":"10.1016/j.ecoinf.2025.103047","DOIUrl":null,"url":null,"abstract":"<div><div>Achieving energy-efficient, precise, and overall efficient production of Antarctic krill (<em>Euphausia superba</em>) is critical for realizing sustainable and ecological fisheries in the context of ongoing natural and anthropogenic climate change. In this study, we comprehensively analyzed commercial <em>E. superba</em> statistics and multivariate marine environmental data from 2010 to 2022 using the gravity center of the fishing ground method, dynamic sliding window, 3DCNN, and 3DCNN-ConvLSTM models. Results: 1) Inter-annual and inter-weekly catch varied significantly, with the total weekly catch evenly distributed between 0 and 2600 tons. The annual gravity center of the fishing grounds varied considerably between years and was mainly concentrated around the islands and in the strait. 2) Neither long- nor short-time-series historical data led to the best prediction. The optimal sliding window size for the 3DCNN was 4, whereas it was 11 for the 3DCNN-ConvLSTM model. 3) Climate change must be considered when selecting data, and the addition of biased data may negatively affect the model's predictive performance. 4) When using an optimal sliding window, the 3DCNN model outperformed the 3DCNN-ConvLSTM model. 5) The 3DCNN model tends to learn information about the environmental variables with the most significant differences in different categories of fishing grounds. This study aids in efficient selection of the most relevant historical data and an optimal model for developing a prediction model for high-catch fishing grounds, thereby providing a scientific foundation for clean production, sustainable development, and effective management of the <em>E. superba</em> fishery.</div></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":"86 ","pages":"Article 103047"},"PeriodicalIF":5.8000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Informatics","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574954125000561","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving energy-efficient, precise, and overall efficient production of Antarctic krill (Euphausia superba) is critical for realizing sustainable and ecological fisheries in the context of ongoing natural and anthropogenic climate change. In this study, we comprehensively analyzed commercial E. superba statistics and multivariate marine environmental data from 2010 to 2022 using the gravity center of the fishing ground method, dynamic sliding window, 3DCNN, and 3DCNN-ConvLSTM models. Results: 1) Inter-annual and inter-weekly catch varied significantly, with the total weekly catch evenly distributed between 0 and 2600 tons. The annual gravity center of the fishing grounds varied considerably between years and was mainly concentrated around the islands and in the strait. 2) Neither long- nor short-time-series historical data led to the best prediction. The optimal sliding window size for the 3DCNN was 4, whereas it was 11 for the 3DCNN-ConvLSTM model. 3) Climate change must be considered when selecting data, and the addition of biased data may negatively affect the model's predictive performance. 4) When using an optimal sliding window, the 3DCNN model outperformed the 3DCNN-ConvLSTM model. 5) The 3DCNN model tends to learn information about the environmental variables with the most significant differences in different categories of fishing grounds. This study aids in efficient selection of the most relevant historical data and an optimal model for developing a prediction model for high-catch fishing grounds, thereby providing a scientific foundation for clean production, sustainable development, and effective management of the E. superba fishery.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecological Informatics
Ecological Informatics 环境科学-生态学
CiteScore
8.30
自引率
11.80%
发文量
346
审稿时长
46 days
期刊介绍: The journal Ecological Informatics is devoted to the publication of high quality, peer-reviewed articles on all aspects of computational ecology, data science and biogeography. The scope of the journal takes into account the data-intensive nature of ecology, the growing capacity of information technology to access, harness and leverage complex data as well as the critical need for informing sustainable management in view of global environmental and climate change. The nature of the journal is interdisciplinary at the crossover between ecology and informatics. It focuses on novel concepts and techniques for image- and genome-based monitoring and interpretation, sensor- and multimedia-based data acquisition, internet-based data archiving and sharing, data assimilation, modelling and prediction of ecological data.
期刊最新文献
Improved digital mapping of soil texture using the kernel temperature–vegetation dryness index and adaptive boosting Suitability of the Amazonas region for beekeeping and its future distribution under climate change scenarios Understanding the ecological impacts of vertical urban growth in mountainous regions Soil moisture dominates gross primary productivity variation during severe droughts in Central Asia Mapping spatiotemporal mortality patterns in spruce mountain forests using Sentinel-2 data and environmental factors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1