Flood-drought shifts monitoring on arid Xinjiang, China using a novel machine learning based algorithm

IF 5.8 2区 环境科学与生态学 Q1 ECOLOGY Ecological Informatics Pub Date : 2025-01-19 DOI:10.1016/j.ecoinf.2025.103030
Sulei Naibi , Anming Bao , Ye Yuan , Jiayu Bao , Rafiq Hamdi , Tao Yu , Xiaoran Huang , Ting Wang , Tao Li , Jingyu Jin , Gang Long , Piet Termonia
{"title":"Flood-drought shifts monitoring on arid Xinjiang, China using a novel machine learning based algorithm","authors":"Sulei Naibi ,&nbsp;Anming Bao ,&nbsp;Ye Yuan ,&nbsp;Jiayu Bao ,&nbsp;Rafiq Hamdi ,&nbsp;Tao Yu ,&nbsp;Xiaoran Huang ,&nbsp;Ting Wang ,&nbsp;Tao Li ,&nbsp;Jingyu Jin ,&nbsp;Gang Long ,&nbsp;Piet Termonia","doi":"10.1016/j.ecoinf.2025.103030","DOIUrl":null,"url":null,"abstract":"<div><div>This study addresses the growing challenges of climate extremes and their impact on flood-drought shifts in Xinjiang, China, a region highly sensitive to climate variations. While existing classification models such as logistic regression (LR), support vector machines (SVMs), and geographically weighted logistic regression (GWLR) have been applied to spatial data, they exhibit limitations in handling spatial nonstationarity and balancing accuracy with interpretability. To fill this gap, we propose a novel least squares SVM (LSSVM)-based spatially varying coefficient logistic regression (LSSVM-SVCLR) model, which combines the flexibility of LSSVM with the interpretability of logistic regression and the spatial adaptability of spatially varying coefficient models. Through simulations under varying data sizes and complexity, the model achieved high accuracy, with area under the curve (<em>AUC</em>) values approaching 1 in simpler cases and around 0.8 in more complex scenarios. A case study analyzing the relationship between climate extremes and flood-drought shifts in Xinjiang demonstrated the model's applicability, achieving training and testing accuracies of 0.994 and 0.831, respectively, outperforming state-of-the-art machine learning models. Furthermore, the model revealed specific spatial effects of climate extremes on flood-drought shifts, providing probabilistic predictions across the study area. The findings highlight the potential of the proposed model to improve predictions of extreme climate-related events, offering valuable insights for disaster management and climate risk evaluation. This study provides a robust framework for analyzing the complexities of spatial nonstationarity in climate risk analysis.</div></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":"86 ","pages":"Article 103030"},"PeriodicalIF":5.8000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Informatics","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574954125000391","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study addresses the growing challenges of climate extremes and their impact on flood-drought shifts in Xinjiang, China, a region highly sensitive to climate variations. While existing classification models such as logistic regression (LR), support vector machines (SVMs), and geographically weighted logistic regression (GWLR) have been applied to spatial data, they exhibit limitations in handling spatial nonstationarity and balancing accuracy with interpretability. To fill this gap, we propose a novel least squares SVM (LSSVM)-based spatially varying coefficient logistic regression (LSSVM-SVCLR) model, which combines the flexibility of LSSVM with the interpretability of logistic regression and the spatial adaptability of spatially varying coefficient models. Through simulations under varying data sizes and complexity, the model achieved high accuracy, with area under the curve (AUC) values approaching 1 in simpler cases and around 0.8 in more complex scenarios. A case study analyzing the relationship between climate extremes and flood-drought shifts in Xinjiang demonstrated the model's applicability, achieving training and testing accuracies of 0.994 and 0.831, respectively, outperforming state-of-the-art machine learning models. Furthermore, the model revealed specific spatial effects of climate extremes on flood-drought shifts, providing probabilistic predictions across the study area. The findings highlight the potential of the proposed model to improve predictions of extreme climate-related events, offering valuable insights for disaster management and climate risk evaluation. This study provides a robust framework for analyzing the complexities of spatial nonstationarity in climate risk analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecological Informatics
Ecological Informatics 环境科学-生态学
CiteScore
8.30
自引率
11.80%
发文量
346
审稿时长
46 days
期刊介绍: The journal Ecological Informatics is devoted to the publication of high quality, peer-reviewed articles on all aspects of computational ecology, data science and biogeography. The scope of the journal takes into account the data-intensive nature of ecology, the growing capacity of information technology to access, harness and leverage complex data as well as the critical need for informing sustainable management in view of global environmental and climate change. The nature of the journal is interdisciplinary at the crossover between ecology and informatics. It focuses on novel concepts and techniques for image- and genome-based monitoring and interpretation, sensor- and multimedia-based data acquisition, internet-based data archiving and sharing, data assimilation, modelling and prediction of ecological data.
期刊最新文献
Improved digital mapping of soil texture using the kernel temperature–vegetation dryness index and adaptive boosting Suitability of the Amazonas region for beekeeping and its future distribution under climate change scenarios Understanding the ecological impacts of vertical urban growth in mountainous regions Soil moisture dominates gross primary productivity variation during severe droughts in Central Asia Mapping spatiotemporal mortality patterns in spruce mountain forests using Sentinel-2 data and environmental factors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1