{"title":"Enhancing rice seed purity recognition accuracy based on optimal feature selection","authors":"Thi-Thu-Hong Phan, Le Huu Bao Nguyen","doi":"10.1016/j.ecoinf.2025.103044","DOIUrl":null,"url":null,"abstract":"<div><div>This study proposes a robust and accurate approach for classifying rice variety purity to meet stringent agricultural standards. To achieve this, we construct a comprehensive dataset by leveraging diverse types of features encompassing morphological properties, overall image structure, texture information, and color distribution from rice seeds. Subsequently, we employ advanced feature selection techniques, including filter methods (Correlation, Chi-square, ANOVA), wrapper methods (Recursive Feature Elimination — RFE), and embedded methods (Random Forest, Decision Trees), to identify the most significant features. Through rigorous experimentation with eight machine learning algorithms, we find that using Random Forest for feature selection, in combination with the SVM classifier, yields the best performance. Specifically, Random Forest reduces the feature set by more than half, from 172 to 80, remarkably enhancing classification accuracy from 94.73% to 96.11%. This paper highlights the potential of the proposed method to offer a robust and efficient solution for rice seed purity identification in agricultural applications, while also opening up new horizons for similar studies.</div></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":"86 ","pages":"Article 103044"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Informatics","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574954125000536","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study proposes a robust and accurate approach for classifying rice variety purity to meet stringent agricultural standards. To achieve this, we construct a comprehensive dataset by leveraging diverse types of features encompassing morphological properties, overall image structure, texture information, and color distribution from rice seeds. Subsequently, we employ advanced feature selection techniques, including filter methods (Correlation, Chi-square, ANOVA), wrapper methods (Recursive Feature Elimination — RFE), and embedded methods (Random Forest, Decision Trees), to identify the most significant features. Through rigorous experimentation with eight machine learning algorithms, we find that using Random Forest for feature selection, in combination with the SVM classifier, yields the best performance. Specifically, Random Forest reduces the feature set by more than half, from 172 to 80, remarkably enhancing classification accuracy from 94.73% to 96.11%. This paper highlights the potential of the proposed method to offer a robust and efficient solution for rice seed purity identification in agricultural applications, while also opening up new horizons for similar studies.
期刊介绍:
The journal Ecological Informatics is devoted to the publication of high quality, peer-reviewed articles on all aspects of computational ecology, data science and biogeography. The scope of the journal takes into account the data-intensive nature of ecology, the growing capacity of information technology to access, harness and leverage complex data as well as the critical need for informing sustainable management in view of global environmental and climate change.
The nature of the journal is interdisciplinary at the crossover between ecology and informatics. It focuses on novel concepts and techniques for image- and genome-based monitoring and interpretation, sensor- and multimedia-based data acquisition, internet-based data archiving and sharing, data assimilation, modelling and prediction of ecological data.