Microwave-assisted facile synthesis of graphitic-C3N4/reduced graphene oxide/MoS2 composite as the bifunctional electrocatalyst for electrochemical water splitting
Sumanta Sahoo , Abdullah Al Mahmud , Ankur Sood , Ganesh Dhakal , Santosh K. Tiwari , Sunmi Zo , Hong Mi Kim , Sung Soo Han
{"title":"Microwave-assisted facile synthesis of graphitic-C3N4/reduced graphene oxide/MoS2 composite as the bifunctional electrocatalyst for electrochemical water splitting","authors":"Sumanta Sahoo , Abdullah Al Mahmud , Ankur Sood , Ganesh Dhakal , Santosh K. Tiwari , Sunmi Zo , Hong Mi Kim , Sung Soo Han","doi":"10.1016/j.jsamd.2024.100843","DOIUrl":null,"url":null,"abstract":"<div><div>Bifunctional electrocatalysts have shown considerable research attention in the field of water splitting in the last few years. The current work reports a simple microwave (MW)-assisted synthetic approach for the fabrication of nanocomposite based on graphitic-C<sub>3</sub>N<sub>4</sub>, reduced graphene oxide (rGO), and MoS<sub>2</sub>. Notably, the ternary composite was synthesized through ultrafast MW irradiation within a short duration by a cost-effective synthetic route. The synthesized composite served as the suitable electrocatalyst for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The overpotential of the composite was 172 mV for HER and 380 mV for OER. Moreover, the Tafel slopes for HER and OER were 147 and 97 mV dec<sup>−1</sup> for HER and OER, respectively. It is further interesting to note that the composite also displayed admirable stability of 24 h for overall water splitting. Inclusively, the current work demonstrated an efficient rGO-supported MW-assisted inexpensive synthetic approach for the development of 2D bifunctional electrocatalysts.</div></div>","PeriodicalId":17219,"journal":{"name":"Journal of Science: Advanced Materials and Devices","volume":"10 1","pages":"Article 100843"},"PeriodicalIF":6.7000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science: Advanced Materials and Devices","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468217924001746","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Bifunctional electrocatalysts have shown considerable research attention in the field of water splitting in the last few years. The current work reports a simple microwave (MW)-assisted synthetic approach for the fabrication of nanocomposite based on graphitic-C3N4, reduced graphene oxide (rGO), and MoS2. Notably, the ternary composite was synthesized through ultrafast MW irradiation within a short duration by a cost-effective synthetic route. The synthesized composite served as the suitable electrocatalyst for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The overpotential of the composite was 172 mV for HER and 380 mV for OER. Moreover, the Tafel slopes for HER and OER were 147 and 97 mV dec−1 for HER and OER, respectively. It is further interesting to note that the composite also displayed admirable stability of 24 h for overall water splitting. Inclusively, the current work demonstrated an efficient rGO-supported MW-assisted inexpensive synthetic approach for the development of 2D bifunctional electrocatalysts.
期刊介绍:
In 1985, the Journal of Science was founded as a platform for publishing national and international research papers across various disciplines, including natural sciences, technology, social sciences, and humanities. Over the years, the journal has experienced remarkable growth in terms of quality, size, and scope. Today, it encompasses a diverse range of publications dedicated to academic research.
Considering the rapid expansion of materials science, we are pleased to introduce the Journal of Science: Advanced Materials and Devices. This new addition to our journal series offers researchers an exciting opportunity to publish their work on all aspects of materials science and technology within the esteemed Journal of Science.
With this development, we aim to revolutionize the way research in materials science is expressed and organized, further strengthening our commitment to promoting outstanding research across various scientific and technological fields.