{"title":"Deformable droplet under Poiseuille flow: Role of flow direction, channel inclination and off-centre dynamics","authors":"Shubham Lanjewar, Sundari Ramji","doi":"10.1016/j.euromechflu.2024.12.005","DOIUrl":null,"url":null,"abstract":"<div><div>The dynamics of a confined, deformable droplet with an imposed external flow (upward, quiescent and downward) is numerically investigated using an in-house solver based on the Level Set method. This is the first comprehensive investigation unravelling (i) the oscillatory dynamics of an off-centered droplet under an external flow, (ii) the hydrodynamics of a droplet subjected to a downward flow, and (iii) the effect of channel orientation. Both co-current and counter-current droplet motions are explored. While a freely falling initially off-centered droplet demonstrates an oscillatory trajectory with significant shape deformation, we show that an imposed downward flow dampens the oscillations and minimizes deformation resulting in a greater terminal speed of the droplet. Conversely, an upward, counter-current flow causes greater droplet deformation with increased oscillations. Moreover, reducing the channel inclination leads to asymmetric droplet shapes with uneven film thickness on either side of the channel and a higher residence time. The other key findings include (i) transition from convex to concave droplet tail in both upward and downward flows, dictated by the strength of external flow and <span><math><mi>Bo</mi></math></span>. (ii) Formation of a streamlined droplet accompanied by an increase in the film thickness on increasing viscosity ratio in both co-current and counter-current droplet flows and (iii) the generation of novel flow maps in the density ratio - pressure drop parameter space delineating three distinct regions: downward sinking, upward rising, and stationary droplet, depending on the relative strength of buoyancy and external flow.</div></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"111 ","pages":"Pages 100-112"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics B-fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997754624001870","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The dynamics of a confined, deformable droplet with an imposed external flow (upward, quiescent and downward) is numerically investigated using an in-house solver based on the Level Set method. This is the first comprehensive investigation unravelling (i) the oscillatory dynamics of an off-centered droplet under an external flow, (ii) the hydrodynamics of a droplet subjected to a downward flow, and (iii) the effect of channel orientation. Both co-current and counter-current droplet motions are explored. While a freely falling initially off-centered droplet demonstrates an oscillatory trajectory with significant shape deformation, we show that an imposed downward flow dampens the oscillations and minimizes deformation resulting in a greater terminal speed of the droplet. Conversely, an upward, counter-current flow causes greater droplet deformation with increased oscillations. Moreover, reducing the channel inclination leads to asymmetric droplet shapes with uneven film thickness on either side of the channel and a higher residence time. The other key findings include (i) transition from convex to concave droplet tail in both upward and downward flows, dictated by the strength of external flow and . (ii) Formation of a streamlined droplet accompanied by an increase in the film thickness on increasing viscosity ratio in both co-current and counter-current droplet flows and (iii) the generation of novel flow maps in the density ratio - pressure drop parameter space delineating three distinct regions: downward sinking, upward rising, and stationary droplet, depending on the relative strength of buoyancy and external flow.
期刊介绍:
The European Journal of Mechanics - B/Fluids publishes papers in all fields of fluid mechanics. Although investigations in well-established areas are within the scope of the journal, recent developments and innovative ideas are particularly welcome. Theoretical, computational and experimental papers are equally welcome. Mathematical methods, be they deterministic or stochastic, analytical or numerical, will be accepted provided they serve to clarify some identifiable problems in fluid mechanics, and provided the significance of results is explained. Similarly, experimental papers must add physical insight in to the understanding of fluid mechanics.