Deformable droplet under Poiseuille flow: Role of flow direction, channel inclination and off-centre dynamics

IF 2.5 3区 工程技术 Q2 MECHANICS European Journal of Mechanics B-fluids Pub Date : 2024-12-21 DOI:10.1016/j.euromechflu.2024.12.005
Shubham Lanjewar, Sundari Ramji
{"title":"Deformable droplet under Poiseuille flow: Role of flow direction, channel inclination and off-centre dynamics","authors":"Shubham Lanjewar,&nbsp;Sundari Ramji","doi":"10.1016/j.euromechflu.2024.12.005","DOIUrl":null,"url":null,"abstract":"<div><div>The dynamics of a confined, deformable droplet with an imposed external flow (upward, quiescent and downward) is numerically investigated using an in-house solver based on the Level Set method. This is the first comprehensive investigation unravelling (i) the oscillatory dynamics of an off-centered droplet under an external flow, (ii) the hydrodynamics of a droplet subjected to a downward flow, and (iii) the effect of channel orientation. Both co-current and counter-current droplet motions are explored. While a freely falling initially off-centered droplet demonstrates an oscillatory trajectory with significant shape deformation, we show that an imposed downward flow dampens the oscillations and minimizes deformation resulting in a greater terminal speed of the droplet. Conversely, an upward, counter-current flow causes greater droplet deformation with increased oscillations. Moreover, reducing the channel inclination leads to asymmetric droplet shapes with uneven film thickness on either side of the channel and a higher residence time. The other key findings include (i) transition from convex to concave droplet tail in both upward and downward flows, dictated by the strength of external flow and <span><math><mi>Bo</mi></math></span>. (ii) Formation of a streamlined droplet accompanied by an increase in the film thickness on increasing viscosity ratio in both co-current and counter-current droplet flows and (iii) the generation of novel flow maps in the density ratio - pressure drop parameter space delineating three distinct regions: downward sinking, upward rising, and stationary droplet, depending on the relative strength of buoyancy and external flow.</div></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"111 ","pages":"Pages 100-112"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics B-fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997754624001870","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The dynamics of a confined, deformable droplet with an imposed external flow (upward, quiescent and downward) is numerically investigated using an in-house solver based on the Level Set method. This is the first comprehensive investigation unravelling (i) the oscillatory dynamics of an off-centered droplet under an external flow, (ii) the hydrodynamics of a droplet subjected to a downward flow, and (iii) the effect of channel orientation. Both co-current and counter-current droplet motions are explored. While a freely falling initially off-centered droplet demonstrates an oscillatory trajectory with significant shape deformation, we show that an imposed downward flow dampens the oscillations and minimizes deformation resulting in a greater terminal speed of the droplet. Conversely, an upward, counter-current flow causes greater droplet deformation with increased oscillations. Moreover, reducing the channel inclination leads to asymmetric droplet shapes with uneven film thickness on either side of the channel and a higher residence time. The other key findings include (i) transition from convex to concave droplet tail in both upward and downward flows, dictated by the strength of external flow and Bo. (ii) Formation of a streamlined droplet accompanied by an increase in the film thickness on increasing viscosity ratio in both co-current and counter-current droplet flows and (iii) the generation of novel flow maps in the density ratio - pressure drop parameter space delineating three distinct regions: downward sinking, upward rising, and stationary droplet, depending on the relative strength of buoyancy and external flow.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.90
自引率
3.80%
发文量
127
审稿时长
58 days
期刊介绍: The European Journal of Mechanics - B/Fluids publishes papers in all fields of fluid mechanics. Although investigations in well-established areas are within the scope of the journal, recent developments and innovative ideas are particularly welcome. Theoretical, computational and experimental papers are equally welcome. Mathematical methods, be they deterministic or stochastic, analytical or numerical, will be accepted provided they serve to clarify some identifiable problems in fluid mechanics, and provided the significance of results is explained. Similarly, experimental papers must add physical insight in to the understanding of fluid mechanics.
期刊最新文献
Editorial Board Calendar Flow structures in the near wake of permeable circular cylinders in shallow water Experimental investigation of synthetic jet impingement upon a honeycomb Sensitivity analysis for incompressible Navier–Stokes equations with uncertain viscosity using polynomial chaos method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1