N. Nouaime , B. Després , M.A. Puscas , C. Fiorini
{"title":"Sensitivity analysis for incompressible Navier–Stokes equations with uncertain viscosity using polynomial chaos method","authors":"N. Nouaime , B. Després , M.A. Puscas , C. Fiorini","doi":"10.1016/j.euromechflu.2025.01.012","DOIUrl":null,"url":null,"abstract":"<div><div>We present a stability estimate for the sensitivity of the incompressible Navier–Stokes equations under uncertainty in model parameters such as viscosity and initial or boundary conditions. The approach employs the stochastic Galerkin method, wherein the solution is represented using a generalized polynomial chaos expansion. The governing equations are projected onto stochastic basis functions, resulting in an extended coupled equation system. These coupled equations are challenging to solve numerically. A decoupling method is proposed to simplify their numerical resolution, which, along with the stability estimates, represents one of this study’s most valuable and original aspects. Finally, we present the lid-driven cavity numerical test to evaluate the polynomial chaos method and compare the solutions with the numerical data published in the literature.</div></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"111 ","pages":"Pages 308-318"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics B-fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997754625000123","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
We present a stability estimate for the sensitivity of the incompressible Navier–Stokes equations under uncertainty in model parameters such as viscosity and initial or boundary conditions. The approach employs the stochastic Galerkin method, wherein the solution is represented using a generalized polynomial chaos expansion. The governing equations are projected onto stochastic basis functions, resulting in an extended coupled equation system. These coupled equations are challenging to solve numerically. A decoupling method is proposed to simplify their numerical resolution, which, along with the stability estimates, represents one of this study’s most valuable and original aspects. Finally, we present the lid-driven cavity numerical test to evaluate the polynomial chaos method and compare the solutions with the numerical data published in the literature.
期刊介绍:
The European Journal of Mechanics - B/Fluids publishes papers in all fields of fluid mechanics. Although investigations in well-established areas are within the scope of the journal, recent developments and innovative ideas are particularly welcome. Theoretical, computational and experimental papers are equally welcome. Mathematical methods, be they deterministic or stochastic, analytical or numerical, will be accepted provided they serve to clarify some identifiable problems in fluid mechanics, and provided the significance of results is explained. Similarly, experimental papers must add physical insight in to the understanding of fluid mechanics.