A novel thermodynamic constitutive model of coarse-grained soils considering the particle breakage

IF 5.5 2区 工程技术 Q1 ENGINEERING, CIVIL Transportation Geotechnics Pub Date : 2025-01-01 DOI:10.1016/j.trgeo.2024.101462
Bing Bai , Bixia Zhang , Hongju Chen , Peipei Chen
{"title":"A novel thermodynamic constitutive model of coarse-grained soils considering the particle breakage","authors":"Bing Bai ,&nbsp;Bixia Zhang ,&nbsp;Hongju Chen ,&nbsp;Peipei Chen","doi":"10.1016/j.trgeo.2024.101462","DOIUrl":null,"url":null,"abstract":"<div><div>The granular thermodynamics was extended to the solid–liquid system, developing a constitutive model for coarse-grained soils (CGS). The model combined the physical conservation equation, thermodynamic differential equation and entropy increase equation to construct a new elastic potential energy density function (EDF). The dissipation energy caused by particle breakage and deformation was associated with macroscopic mechanical behavior using dissipation system, migration coefficients, and particle breakage function. The particle breakage function was applied to convey the change in particle gradation, as well as the critical-state stress ratio. The model integrated the concept of critical-state line drift, revealing the attenuation of shear stiffness/strength due to dilatancy/shrinkage. Test results of Toyoura sand (TS), crushed cambric slate (CCS), and calcareous sand (CS) were selected to validate the proposed model, manifesting a great advantage and high prediction accuracy.</div></div>","PeriodicalId":56013,"journal":{"name":"Transportation Geotechnics","volume":"50 ","pages":"Article 101462"},"PeriodicalIF":5.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214391224002836","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

The granular thermodynamics was extended to the solid–liquid system, developing a constitutive model for coarse-grained soils (CGS). The model combined the physical conservation equation, thermodynamic differential equation and entropy increase equation to construct a new elastic potential energy density function (EDF). The dissipation energy caused by particle breakage and deformation was associated with macroscopic mechanical behavior using dissipation system, migration coefficients, and particle breakage function. The particle breakage function was applied to convey the change in particle gradation, as well as the critical-state stress ratio. The model integrated the concept of critical-state line drift, revealing the attenuation of shear stiffness/strength due to dilatancy/shrinkage. Test results of Toyoura sand (TS), crushed cambric slate (CCS), and calcareous sand (CS) were selected to validate the proposed model, manifesting a great advantage and high prediction accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑颗粒破碎的粗粒土热力学本构模型
将颗粒热力学扩展到固液体系,建立了粗粒土的本构模型。该模型结合物理守恒方程、热力学微分方程和熵增方程,构造了一个新的弹性势能密度函数(EDF)。利用耗散系统、迁移系数和颗粒破碎函数将颗粒破碎和变形引起的耗散能与宏观力学行为联系起来。采用颗粒破碎函数来表达颗粒级配的变化,以及临界状态应力比。该模型整合了临界状态线漂移的概念,揭示了剪胀/收缩对剪切刚度/强度的衰减。采用Toyoura砂(TS)、碎砂板岩(CCS)和钙质砂(CS)的试验结果对模型进行了验证,结果表明该模型具有较大的优势和较高的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Transportation Geotechnics
Transportation Geotechnics Social Sciences-Transportation
CiteScore
8.10
自引率
11.30%
发文量
194
审稿时长
51 days
期刊介绍: Transportation Geotechnics is a journal dedicated to publishing high-quality, theoretical, and applied papers that cover all facets of geotechnics for transportation infrastructure such as roads, highways, railways, underground railways, airfields, and waterways. The journal places a special emphasis on case studies that present original work relevant to the sustainable construction of transportation infrastructure. The scope of topics it addresses includes the geotechnical properties of geomaterials for sustainable and rational design and construction, the behavior of compacted and stabilized geomaterials, the use of geosynthetics and reinforcement in constructed layers and interlayers, ground improvement and slope stability for transportation infrastructures, compaction technology and management, maintenance technology, the impact of climate, embankments for highways and high-speed trains, transition zones, dredging, underwater geotechnics for infrastructure purposes, and the modeling of multi-layered structures and supporting ground under dynamic and repeated loads.
期刊最新文献
Genetic programming-based closed-form solutions for predicting the compressive strength of cement-treated soils Hydro-mechanical responses of irregular twin tunnels with unequal burial depths in anisotropic soil layer Distribution and evolution of distress in embankment-bridge transition sections of the Gonghe–Yushu Expressway in degrading permafrost regions X-ray CT-based investigation of mesoscopic pore structure and macro-meso coupled damage model for anisotropic lean clay under a freeze–thaw cycle A framework for mitigating boundary effects in transportation embankment seismic analysis: shaking table tests and numerical simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1