Laura Titheridge , Shailendra K. Sharma , Anouk Soisson , Christina Roth , Aaron T. Marshall
{"title":"Recent advances in understanding catalyst coated membranes vs catalyst coated substrates for AEM electrolysers","authors":"Laura Titheridge , Shailendra K. Sharma , Anouk Soisson , Christina Roth , Aaron T. Marshall","doi":"10.1016/j.coelec.2024.101607","DOIUrl":null,"url":null,"abstract":"<div><div>There is growing interest in anion exchange membrane water electrolysers (AEMWE) as the need for lower-cost, green H<sub>2</sub> production technologies compatible with intermittent variable renewable energy sources grows. Especially given their unique ability to utilise low-cost, non-PGM materials in the alkaline environment, enabling them to readily lower system capital cost and avoid problems from material criticality. This review outlines recent advances in understanding the membrane electrode assembly (MEA) in AEMWEs, specifically the influence of catalyst-coated substrate (CCS) and catalyst-coated membrane (CCM) assembly methods on cell performance and durability. The aim of this review is to identify the current level of material and cell assembly development and highlight aspects that would benefit from further work in order to demonstrate the technological and cost feasibility of AEMWE and direct them toward commercial viability.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"49 ","pages":"Article 101607"},"PeriodicalIF":7.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Electrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451910324001686","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
There is growing interest in anion exchange membrane water electrolysers (AEMWE) as the need for lower-cost, green H2 production technologies compatible with intermittent variable renewable energy sources grows. Especially given their unique ability to utilise low-cost, non-PGM materials in the alkaline environment, enabling them to readily lower system capital cost and avoid problems from material criticality. This review outlines recent advances in understanding the membrane electrode assembly (MEA) in AEMWEs, specifically the influence of catalyst-coated substrate (CCS) and catalyst-coated membrane (CCM) assembly methods on cell performance and durability. The aim of this review is to identify the current level of material and cell assembly development and highlight aspects that would benefit from further work in order to demonstrate the technological and cost feasibility of AEMWE and direct them toward commercial viability.
期刊介绍:
The development of the Current Opinion journals stemmed from the acknowledgment of the growing challenge for specialists to stay abreast of the expanding volume of information within their field. In Current Opinion in Electrochemistry, they help the reader by providing in a systematic manner:
1.The views of experts on current advances in electrochemistry in a clear and readable form.
2.Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
In the realm of electrochemistry, the subject is divided into 12 themed sections, with each section undergoing an annual review cycle:
• Bioelectrochemistry • Electrocatalysis • Electrochemical Materials and Engineering • Energy Storage: Batteries and Supercapacitors • Energy Transformation • Environmental Electrochemistry • Fundamental & Theoretical Electrochemistry • Innovative Methods in Electrochemistry • Organic & Molecular Electrochemistry • Physical & Nano-Electrochemistry • Sensors & Bio-sensors •