{"title":"Large eddy simulations of turbulent premixed bluff body flames operated with ethanol, n-heptane, and jet fuels","authors":"Arvid Åkerblom, Christer Fureby","doi":"10.1016/j.combustflame.2024.113895","DOIUrl":null,"url":null,"abstract":"<div><div>Large Eddy Simulations (LES) are carried out targeting an unconfined premixed bluff body burner operated with ethanol, n-heptane, Jet A, and a Sustainable Aviation Fuel (SAF) labeled C1. The purpose is to validate the chosen simulation methodology for these fuels, which have not been simulated in the targeted case before, and to provide new information about how they burn and stabilize. The combustion of each fuel is modeled using Finite Rate Chemistry (FRC) and a pathway-centric chemical reaction mechanism. Subgrid-scale turbulence-chemistry interactions are modeled using a Partially Stirred Reactor (PaSR) approach. In accordance with previous experiments, snapshots of the OH and CH<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O distributions, as well as velocity, are extracted from the simulations and subjected to statistical analysis to obtain mean flame progress variable distributions, flame surface density, and CH<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O layer thickness. A mesh sensitivity analysis is carried out for all fuels, revealing that a crucial filter width threshold between 0.375 and 0.25 mm must be reached to achieve a stable flame and low mesh sensitivity. Statistically, the simulations show good agreement with previous experimental measurements. The flame sheet diameter is found to be approximately linearly correlated with extinction strain rate and Damköhler number, suggesting that resistance to turbulence is the determining factor for the flame size. The C1 flame is found to experience the weakest fluctuations, and a mechanism based on the relative time scales of flame propagation and the ignition of fuel decomposition products is proposed to explain this effect.</div><div><strong>Novelty and significance statement</strong></div><div>Sustainable aviation fuels are of major importance in reducing the climate impact of aviation, but their combustion is not nearly as well-understood as that of fossil jet fuels. Both experimental and numerical research is needed to map out the relationship between fuel composition and combustion performance, so that blending limits can be increased while guaranteeing safety, operability, and performance in aircraft engines. This work explores the turbulent flame dynamics of one commercial sustainable aviation fuel, C1. It is also the first numerical study to consider ethanol, n-heptane, Jet A, or C1 in the Cambridge bluff body burner, a case which has primarily been studied with methane. The results reveal several trends among the fuels which may be investigated further in future studies. C1 is found to be particularly resistant to outward fluctuations into the reactants, which connects fuel decomposition to flame stability.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"272 ","pages":"Article 113895"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion and Flame","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010218024006047","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Large Eddy Simulations (LES) are carried out targeting an unconfined premixed bluff body burner operated with ethanol, n-heptane, Jet A, and a Sustainable Aviation Fuel (SAF) labeled C1. The purpose is to validate the chosen simulation methodology for these fuels, which have not been simulated in the targeted case before, and to provide new information about how they burn and stabilize. The combustion of each fuel is modeled using Finite Rate Chemistry (FRC) and a pathway-centric chemical reaction mechanism. Subgrid-scale turbulence-chemistry interactions are modeled using a Partially Stirred Reactor (PaSR) approach. In accordance with previous experiments, snapshots of the OH and CHO distributions, as well as velocity, are extracted from the simulations and subjected to statistical analysis to obtain mean flame progress variable distributions, flame surface density, and CHO layer thickness. A mesh sensitivity analysis is carried out for all fuels, revealing that a crucial filter width threshold between 0.375 and 0.25 mm must be reached to achieve a stable flame and low mesh sensitivity. Statistically, the simulations show good agreement with previous experimental measurements. The flame sheet diameter is found to be approximately linearly correlated with extinction strain rate and Damköhler number, suggesting that resistance to turbulence is the determining factor for the flame size. The C1 flame is found to experience the weakest fluctuations, and a mechanism based on the relative time scales of flame propagation and the ignition of fuel decomposition products is proposed to explain this effect.
Novelty and significance statement
Sustainable aviation fuels are of major importance in reducing the climate impact of aviation, but their combustion is not nearly as well-understood as that of fossil jet fuels. Both experimental and numerical research is needed to map out the relationship between fuel composition and combustion performance, so that blending limits can be increased while guaranteeing safety, operability, and performance in aircraft engines. This work explores the turbulent flame dynamics of one commercial sustainable aviation fuel, C1. It is also the first numerical study to consider ethanol, n-heptane, Jet A, or C1 in the Cambridge bluff body burner, a case which has primarily been studied with methane. The results reveal several trends among the fuels which may be investigated further in future studies. C1 is found to be particularly resistant to outward fluctuations into the reactants, which connects fuel decomposition to flame stability.
期刊介绍:
The mission of the journal is to publish high quality work from experimental, theoretical, and computational investigations on the fundamentals of combustion phenomena and closely allied matters. While submissions in all pertinent areas are welcomed, past and recent focus of the journal has been on:
Development and validation of reaction kinetics, reduction of reaction mechanisms and modeling of combustion systems, including:
Conventional, alternative and surrogate fuels;
Pollutants;
Particulate and aerosol formation and abatement;
Heterogeneous processes.
Experimental, theoretical, and computational studies of laminar and turbulent combustion phenomena, including:
Premixed and non-premixed flames;
Ignition and extinction phenomena;
Flame propagation;
Flame structure;
Instabilities and swirl;
Flame spread;
Multi-phase reactants.
Advances in diagnostic and computational methods in combustion, including:
Measurement and simulation of scalar and vector properties;
Novel techniques;
State-of-the art applications.
Fundamental investigations of combustion technologies and systems, including:
Internal combustion engines;
Gas turbines;
Small- and large-scale stationary combustion and power generation;
Catalytic combustion;
Combustion synthesis;
Combustion under extreme conditions;
New concepts.