Engineered MnO2-Multiwalled carbon Nanotube nanoheterostructures for efficient removal of nanoplastics and plastic-derived contaminant Bisphenol S from contaminated water
{"title":"Engineered MnO2-Multiwalled carbon Nanotube nanoheterostructures for efficient removal of nanoplastics and plastic-derived contaminant Bisphenol S from contaminated water","authors":"Abhishek Mandal , Arpan Sarkar , Sangeetha Thykandi , Soumadip Guchhait , Gopala Krishna Darbha","doi":"10.1016/j.enmm.2024.101038","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the potential application of engineered MnO<sub>2</sub>-Multiwalled Carbon Nanotube (MWCNT) nanoheterostructures (NHs) for the simultaneous removal of nanoplastics (NPs) and bisphenol S (BPS) from polluted water, two persistent pollutants from plastic degradation that pose substantial health and ecological risks. The presence of ε-MnO<sub>2</sub> in the nanoheterostructure, confirmed by XRD, HRTEM, and XPS studies, enhances its surface reactivity due to microtwinning defects and mixed oxidation states of Mn. Under optimized conditions, MnO<sub>2</sub>-MWCNT NHs achieved complete removal of 10 mg/L NPs and 1 ppm BPS at a dosage of 1.5 g/L within 24 h at 25 °C. The NP removal was facilitated by heteroaggregation with MnO<sub>2</sub>-MWCNT NHs, following a pseudo-first-order kinetic model with a rate constant of 1.87 mg/L·min, achieving approximately 90 % removal within the first hour. BPS adsorption was an endothermic process, well-described by the Freundlich, Sips, and Dubinin–Astakhov (D-A) isotherm models, indicating an adsorption capacity exceeding 2 mg/g at 25 °C, primarily controlled by liquid film diffusion. The MnO<sub>2</sub>-MWCNT NHs were effective in removing BPS and NPs across varying water chemistry (pH and ionic strength) and natural water matrices, including river, estuary, and seawater. A 2 g/L dose of MnO<sub>2</sub>-MWCNT NHs was sufficient for simultaneous NPs and BPS removal, while excellent reusability over multiple cycles demonstrated the potential for long-term water treatment applications of the material. Overall, MnO<sub>2</sub>-MWCNT NHs offer a sustainable, efficient, and cost-effective solution for water remediation, with promising implications for global pollution control efforts.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"23 ","pages":"Article 101038"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Nanotechnology, Monitoring and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215153224001260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the potential application of engineered MnO2-Multiwalled Carbon Nanotube (MWCNT) nanoheterostructures (NHs) for the simultaneous removal of nanoplastics (NPs) and bisphenol S (BPS) from polluted water, two persistent pollutants from plastic degradation that pose substantial health and ecological risks. The presence of ε-MnO2 in the nanoheterostructure, confirmed by XRD, HRTEM, and XPS studies, enhances its surface reactivity due to microtwinning defects and mixed oxidation states of Mn. Under optimized conditions, MnO2-MWCNT NHs achieved complete removal of 10 mg/L NPs and 1 ppm BPS at a dosage of 1.5 g/L within 24 h at 25 °C. The NP removal was facilitated by heteroaggregation with MnO2-MWCNT NHs, following a pseudo-first-order kinetic model with a rate constant of 1.87 mg/L·min, achieving approximately 90 % removal within the first hour. BPS adsorption was an endothermic process, well-described by the Freundlich, Sips, and Dubinin–Astakhov (D-A) isotherm models, indicating an adsorption capacity exceeding 2 mg/g at 25 °C, primarily controlled by liquid film diffusion. The MnO2-MWCNT NHs were effective in removing BPS and NPs across varying water chemistry (pH and ionic strength) and natural water matrices, including river, estuary, and seawater. A 2 g/L dose of MnO2-MWCNT NHs was sufficient for simultaneous NPs and BPS removal, while excellent reusability over multiple cycles demonstrated the potential for long-term water treatment applications of the material. Overall, MnO2-MWCNT NHs offer a sustainable, efficient, and cost-effective solution for water remediation, with promising implications for global pollution control efforts.
期刊介绍:
Environmental Nanotechnology, Monitoring and Management is a journal devoted to the publication of peer reviewed original research on environmental nanotechnologies, monitoring studies and management for water, soil , waste and human health samples. Critical review articles, short communications and scientific policy briefs are also welcome. The journal will include all environmental matrices except air. Nanomaterials were suggested as efficient cost-effective and environmental friendly alternative to existing treatment materials, from the standpoints of both resource conservation and environmental remediation. The journal aims to receive papers in the field of nanotechnology covering; Developments of new nanosorbents for: •Groundwater, drinking water and wastewater treatment •Remediation of contaminated sites •Assessment of novel nanotechnologies including sustainability and life cycle implications Monitoring and Management papers should cover the fields of: •Novel analytical methods applied to environmental and health samples •Fate and transport of pollutants in the environment •Case studies covering environmental monitoring and public health •Water and soil prevention and legislation •Industrial and hazardous waste- legislation, characterisation, management practices, minimization, treatment and disposal •Environmental management and remediation