{"title":"Enhancing climate action evaluation using artificial neural networks: An analysis of SDG 13","authors":"Cosimo Magazzino , Zakaria Zoundi","doi":"10.1016/j.sftr.2025.100439","DOIUrl":null,"url":null,"abstract":"<div><div>This study aims to enhance the evaluation of climate-related Sustainable Development Goals (SDGs), with a focus on SDG 13 (\"Climate Action\"), using Artificial Neural Networks (ANNs) methods. It examines seven critical 2023 SDG Global Index indexes to model and predict environmental performance. The innovative use of ANNs allows for capturing complex and non-linear interactions among sustainability indicators, surpassing traditional linear models. A key component of the research is the application of Garson's algorithm, which identifies the relative importance of each of the seven indexes in influencing climate outcomes. The study optimizes the ANN's parameters through a grid search, ensuring robust and precise predictions. This research offers valuable insights for policymakers and researchers aiming to improve climate action strategies by providing a more nuanced understanding of the factors driving environmental performance. The findings demonstrate the potential of advanced AI techniques in refining sustainability assessments and guiding more effective environmental policies. Key policy insights drawn from the study include expanding interventions aimed at promoting more sustainable consumption and production policies, given the significant contribution of SDG 12 in driving climate goals; reviewing the methods for measuring economic growth to account for the planetary crises; and increasing the use of AI tools to guide policymaking.</div></div>","PeriodicalId":34478,"journal":{"name":"Sustainable Futures","volume":"9 ","pages":"Article 100439"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Futures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666188825000097","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to enhance the evaluation of climate-related Sustainable Development Goals (SDGs), with a focus on SDG 13 ("Climate Action"), using Artificial Neural Networks (ANNs) methods. It examines seven critical 2023 SDG Global Index indexes to model and predict environmental performance. The innovative use of ANNs allows for capturing complex and non-linear interactions among sustainability indicators, surpassing traditional linear models. A key component of the research is the application of Garson's algorithm, which identifies the relative importance of each of the seven indexes in influencing climate outcomes. The study optimizes the ANN's parameters through a grid search, ensuring robust and precise predictions. This research offers valuable insights for policymakers and researchers aiming to improve climate action strategies by providing a more nuanced understanding of the factors driving environmental performance. The findings demonstrate the potential of advanced AI techniques in refining sustainability assessments and guiding more effective environmental policies. Key policy insights drawn from the study include expanding interventions aimed at promoting more sustainable consumption and production policies, given the significant contribution of SDG 12 in driving climate goals; reviewing the methods for measuring economic growth to account for the planetary crises; and increasing the use of AI tools to guide policymaking.
期刊介绍:
Sustainable Futures: is a journal focused on the intersection of sustainability, environment and technology from various disciplines in social sciences, and their larger implications for corporation, government, education institutions, regions and society both at present and in the future. It provides an advanced platform for studies related to sustainability and sustainable development in society, economics, environment, and culture. The scope of the journal is broad and encourages interdisciplinary research, as well as welcoming theoretical and practical research from all methodological approaches.