Enhancement of Congo red adsorption using oxidated nitrogen-doped carbon nanotubes

Alicia E. Chávez-Guajardo , Luis Octavio Solis-Sanchez , María Medina-Llamas , Brenda I. Orea-Calderón , Florentino López-Urías , Emilio Muñoz-Sandoval , Verónica L. Medina-Llamas
{"title":"Enhancement of Congo red adsorption using oxidated nitrogen-doped carbon nanotubes","authors":"Alicia E. Chávez-Guajardo ,&nbsp;Luis Octavio Solis-Sanchez ,&nbsp;María Medina-Llamas ,&nbsp;Brenda I. Orea-Calderón ,&nbsp;Florentino López-Urías ,&nbsp;Emilio Muñoz-Sandoval ,&nbsp;Verónica L. Medina-Llamas","doi":"10.1016/j.enmm.2024.101037","DOIUrl":null,"url":null,"abstract":"<div><div>This work reports the synthesis of nitrogen-doped multilayer carbon nanotubes (N-MWCNTs). The N-MWCNTs were subjected to mild oxidation in air at different temperatures and exposure times to obtain a variety of composites from N-MWCNTs with iron oxide nanoparticles up to mainly nanostructured hematite in its alpha phase (α-Fe<sub>2</sub>O<sub>3</sub>). X-ray diffraction allowed us to track the transformation path of the N-MWCNTs have a cross oxidation time. Each composite was fully characterized. FTIR analysis revealed that the oxidated N-MWCNTs exhibited a high content of carboxylic and carbonyl functional groups. Raman spectroscopy characterization shows a decrease in the D-band intensity and an increase in the 2D-band intensity as the oxidation temperature and oxidation time increase. For instance, the 5 min oxidized N-MWCNTs at 620 °C show a 3 % decrease in both the I<sub>D</sub>/I<sub>G</sub> and I<sub>2D</sub>/I<sub>G</sub> ratios. At 10 min at 620 °C, a 10 % decrease in the I<sub>D</sub>/I<sub>G</sub> ratio and a 15 % increase in the I<sub>2D</sub>/I<sub>G</sub> ratio were observed. The former results indicate the opening of the CNTs tips and the exposure of the graphitic layers as oxidation time increases. The TEM micrographs can easily corroborate the former trends. The performance of the pristine and oxidized N-MWCNTs was evaluated for the adsorption of Congo red (CR) as a model pollutant. The results indicate that mild oxidation temperatures (620 °C) and short oxidation times favor CR adsorption with a faster adsorption equilibrium than pristine N-MWCNTs. The percentage removal of pristine N-MWCNTS was 33 %. The oxidized samples at 620 °C had a higher adsorption removal of CR up to 36 % and 43 % when oxidation time was 5 and 10 min. The results demonstrate that oxidation thermal treatment reduces amorphous carbon and promotes the opening of the CNTs, increasing the active sites on the surface of the material, which facilitates interaction with CR.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"23 ","pages":"Article 101037"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Nanotechnology, Monitoring and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215153224001259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

This work reports the synthesis of nitrogen-doped multilayer carbon nanotubes (N-MWCNTs). The N-MWCNTs were subjected to mild oxidation in air at different temperatures and exposure times to obtain a variety of composites from N-MWCNTs with iron oxide nanoparticles up to mainly nanostructured hematite in its alpha phase (α-Fe2O3). X-ray diffraction allowed us to track the transformation path of the N-MWCNTs have a cross oxidation time. Each composite was fully characterized. FTIR analysis revealed that the oxidated N-MWCNTs exhibited a high content of carboxylic and carbonyl functional groups. Raman spectroscopy characterization shows a decrease in the D-band intensity and an increase in the 2D-band intensity as the oxidation temperature and oxidation time increase. For instance, the 5 min oxidized N-MWCNTs at 620 °C show a 3 % decrease in both the ID/IG and I2D/IG ratios. At 10 min at 620 °C, a 10 % decrease in the ID/IG ratio and a 15 % increase in the I2D/IG ratio were observed. The former results indicate the opening of the CNTs tips and the exposure of the graphitic layers as oxidation time increases. The TEM micrographs can easily corroborate the former trends. The performance of the pristine and oxidized N-MWCNTs was evaluated for the adsorption of Congo red (CR) as a model pollutant. The results indicate that mild oxidation temperatures (620 °C) and short oxidation times favor CR adsorption with a faster adsorption equilibrium than pristine N-MWCNTs. The percentage removal of pristine N-MWCNTS was 33 %. The oxidized samples at 620 °C had a higher adsorption removal of CR up to 36 % and 43 % when oxidation time was 5 and 10 min. The results demonstrate that oxidation thermal treatment reduces amorphous carbon and promotes the opening of the CNTs, increasing the active sites on the surface of the material, which facilitates interaction with CR.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Nanotechnology, Monitoring and Management
Environmental Nanotechnology, Monitoring and Management Environmental Science-Water Science and Technology
CiteScore
13.00
自引率
0.00%
发文量
132
审稿时长
48 days
期刊介绍: Environmental Nanotechnology, Monitoring and Management is a journal devoted to the publication of peer reviewed original research on environmental nanotechnologies, monitoring studies and management for water, soil , waste and human health samples. Critical review articles, short communications and scientific policy briefs are also welcome. The journal will include all environmental matrices except air. Nanomaterials were suggested as efficient cost-effective and environmental friendly alternative to existing treatment materials, from the standpoints of both resource conservation and environmental remediation. The journal aims to receive papers in the field of nanotechnology covering; Developments of new nanosorbents for: •Groundwater, drinking water and wastewater treatment •Remediation of contaminated sites •Assessment of novel nanotechnologies including sustainability and life cycle implications Monitoring and Management papers should cover the fields of: •Novel analytical methods applied to environmental and health samples •Fate and transport of pollutants in the environment •Case studies covering environmental monitoring and public health •Water and soil prevention and legislation •Industrial and hazardous waste- legislation, characterisation, management practices, minimization, treatment and disposal •Environmental management and remediation
期刊最新文献
The hidden threat of microplastics in urban freshwater ecosystem: A comprehensive review The prospect of using polyvinyl chloride with -n-hydroxyl amine, a metal binding agent, to adsorb uranium from its aqueous solution Development of fly ash/melamine composites for crystal violate dye removal from aqueous media Reactive transport and sorption behavior of pollutants in presence of redox-sensitive nano Fe0 impregnated graphene: Advancing towards continuous water filtration Photocatalytic degradation of antibiotics using Cu doped-SnO2/CQDs nanocomposites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1