{"title":"Fluoride distribution, groundwater quality and health risk assessment for contaminated region near Krishna River (Maharashtra) India","authors":"Sandip Sampatrao Sathe , Uday Bhan , Anamika Kushwaha , Mohd Shabbir , Kranti Patil , Vishal Kamboj , Lalit Goswami , Seungdae Oh , Kanchan Deoli Bahukhandi , Akhilesh Bind","doi":"10.1016/j.enmm.2024.101033","DOIUrl":null,"url":null,"abstract":"<div><div>The present study aims to examine the sustainability of groundwater in a contaminated area of Krishna river, one of the vital natural source for drinking and irrigation purposes in India. The water samples (in total 142) were collected in different seasons from Sangli district of Maharashtra state, India, and their suitability for drinking, domestic usage, irrigation water quality indices, and health risk assessment were studied. The spatial distribution and safe groundwater region were identified using the ordinary Kriging method. The major cations concentration was observed in order as Mg<sup>2+</sup> > Ca<sup>2+</sup> > K<sup>+</sup> > Na<sup>+</sup>, whereas for anions it was observed as HCO<sub>3</sub><sup>−</sup> > SO<sub>4</sub><sup>2−</sup> > Cl<sup>−</sup> > F<sup>−</sup>. The groundwater quality indices for magnesium hazard (MH) suggest that 100 samples from the village area, 27 from the city area, and 7 from the industrial area were found not suitable for the irrigation purposes. Similarly, the results of Kelley’s ratio and sodium absorption ratio support MH findings and suggest that these sources are inapt for irrigation purposes. Pearson correlation values for industrial area samples showed a significantly positive correlation value for F<sup>−</sup> with SO<sub>4</sub><sup>2−</sup>, Ca<sup>2+</sup>, and K<sup>+</sup> as 0.48, 0.87, and 0.89, respectively. The health risk assessment shows that in the industrial, city and, village areas, 21 %, 4 %, and 19 % of children are highly susceptible to fluorosis, respectively. This physicochemical and hydrogeochemical study of groundwater suggests that the shallow aquifer depth groundwater of this study area was moderately unsafe for the usage of drinking and irrigation purposes.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"23 ","pages":"Article 101033"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Nanotechnology, Monitoring and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215153224001211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
The present study aims to examine the sustainability of groundwater in a contaminated area of Krishna river, one of the vital natural source for drinking and irrigation purposes in India. The water samples (in total 142) were collected in different seasons from Sangli district of Maharashtra state, India, and their suitability for drinking, domestic usage, irrigation water quality indices, and health risk assessment were studied. The spatial distribution and safe groundwater region were identified using the ordinary Kriging method. The major cations concentration was observed in order as Mg2+ > Ca2+ > K+ > Na+, whereas for anions it was observed as HCO3− > SO42− > Cl− > F−. The groundwater quality indices for magnesium hazard (MH) suggest that 100 samples from the village area, 27 from the city area, and 7 from the industrial area were found not suitable for the irrigation purposes. Similarly, the results of Kelley’s ratio and sodium absorption ratio support MH findings and suggest that these sources are inapt for irrigation purposes. Pearson correlation values for industrial area samples showed a significantly positive correlation value for F− with SO42−, Ca2+, and K+ as 0.48, 0.87, and 0.89, respectively. The health risk assessment shows that in the industrial, city and, village areas, 21 %, 4 %, and 19 % of children are highly susceptible to fluorosis, respectively. This physicochemical and hydrogeochemical study of groundwater suggests that the shallow aquifer depth groundwater of this study area was moderately unsafe for the usage of drinking and irrigation purposes.
期刊介绍:
Environmental Nanotechnology, Monitoring and Management is a journal devoted to the publication of peer reviewed original research on environmental nanotechnologies, monitoring studies and management for water, soil , waste and human health samples. Critical review articles, short communications and scientific policy briefs are also welcome. The journal will include all environmental matrices except air. Nanomaterials were suggested as efficient cost-effective and environmental friendly alternative to existing treatment materials, from the standpoints of both resource conservation and environmental remediation. The journal aims to receive papers in the field of nanotechnology covering; Developments of new nanosorbents for: •Groundwater, drinking water and wastewater treatment •Remediation of contaminated sites •Assessment of novel nanotechnologies including sustainability and life cycle implications Monitoring and Management papers should cover the fields of: •Novel analytical methods applied to environmental and health samples •Fate and transport of pollutants in the environment •Case studies covering environmental monitoring and public health •Water and soil prevention and legislation •Industrial and hazardous waste- legislation, characterisation, management practices, minimization, treatment and disposal •Environmental management and remediation