Intelligent generation and interpretability analysis of shear wall structure design by learning from multidimensional to high-dimensional features

IF 5.6 1区 工程技术 Q1 ENGINEERING, CIVIL Engineering Structures Pub Date : 2024-12-14 DOI:10.1016/j.engstruct.2024.119472
Yue Yu , You Chen , Wenjie Liao , Zihang Wang , Shulu Zhang , Yongjun Kang , Xinzheng Lu
{"title":"Intelligent generation and interpretability analysis of shear wall structure design by learning from multidimensional to high-dimensional features","authors":"Yue Yu ,&nbsp;You Chen ,&nbsp;Wenjie Liao ,&nbsp;Zihang Wang ,&nbsp;Shulu Zhang ,&nbsp;Yongjun Kang ,&nbsp;Xinzheng Lu","doi":"10.1016/j.engstruct.2024.119472","DOIUrl":null,"url":null,"abstract":"<div><div>The intelligent design of shear wall structures is a critical aspect of smart construction, with a high demand for research and applications. Accurately predicting the shear wall ratio (i.e., the shear wall area-to-floor area ratio) during cost estimation and rapidly generating shear wall layouts during early design is essential. However, the unclear influences of numerous design feature parameters hinder the enhancement of generative AI design. This affects both the prediction of shear wall ratios from multidimensional features and the generation of shear wall layouts from high-dimensional features. Therefore, a method for generating key structural design features using machine learning (ML) and generative adversarial networks (GANs), along with model interpretation, is proposed in this study. Existing shear wall design data are collected, and features such as the architectural plan geometry, seismic design conditions, and shear wall ratios are extracted to establish a dataset. Key shear wall ratio parameters are predicted using an ML model with multidimensional design features as inputs, and interpretability analysis is conducted using Shapley Additive Explanations (SHAP). Concurrently, a GAN model is built to generate shear wall designs using fused image-text high-dimensional features, and the influence patterns of design features are explained through sensitivity analysis. The analysis results indicate that the prediction accuracy is effectively enhanced by ML-based multidimensional feature learning, shear wall designs are effectively generated by GAN-based high-dimensional feature learning, and seismic design intensity and structural height are revealed as significant factors through interpretability analysis. Furthermore, when high-dimensional feature inputs are available, the generation of comprehensive features should be prioritized for shear wall structural designs.</div></div>","PeriodicalId":11763,"journal":{"name":"Engineering Structures","volume":"325 ","pages":"Article 119472"},"PeriodicalIF":5.6000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141029624020340","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

The intelligent design of shear wall structures is a critical aspect of smart construction, with a high demand for research and applications. Accurately predicting the shear wall ratio (i.e., the shear wall area-to-floor area ratio) during cost estimation and rapidly generating shear wall layouts during early design is essential. However, the unclear influences of numerous design feature parameters hinder the enhancement of generative AI design. This affects both the prediction of shear wall ratios from multidimensional features and the generation of shear wall layouts from high-dimensional features. Therefore, a method for generating key structural design features using machine learning (ML) and generative adversarial networks (GANs), along with model interpretation, is proposed in this study. Existing shear wall design data are collected, and features such as the architectural plan geometry, seismic design conditions, and shear wall ratios are extracted to establish a dataset. Key shear wall ratio parameters are predicted using an ML model with multidimensional design features as inputs, and interpretability analysis is conducted using Shapley Additive Explanations (SHAP). Concurrently, a GAN model is built to generate shear wall designs using fused image-text high-dimensional features, and the influence patterns of design features are explained through sensitivity analysis. The analysis results indicate that the prediction accuracy is effectively enhanced by ML-based multidimensional feature learning, shear wall designs are effectively generated by GAN-based high-dimensional feature learning, and seismic design intensity and structural height are revealed as significant factors through interpretability analysis. Furthermore, when high-dimensional feature inputs are available, the generation of comprehensive features should be prioritized for shear wall structural designs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering Structures
Engineering Structures 工程技术-工程:土木
CiteScore
10.20
自引率
14.50%
发文量
1385
审稿时长
67 days
期刊介绍: Engineering Structures provides a forum for a broad blend of scientific and technical papers to reflect the evolving needs of the structural engineering and structural mechanics communities. Particularly welcome are contributions dealing with applications of structural engineering and mechanics principles in all areas of technology. The journal aspires to a broad and integrated coverage of the effects of dynamic loadings and of the modelling techniques whereby the structural response to these loadings may be computed. The scope of Engineering Structures encompasses, but is not restricted to, the following areas: infrastructure engineering; earthquake engineering; structure-fluid-soil interaction; wind engineering; fire engineering; blast engineering; structural reliability/stability; life assessment/integrity; structural health monitoring; multi-hazard engineering; structural dynamics; optimization; expert systems; experimental modelling; performance-based design; multiscale analysis; value engineering. Topics of interest include: tall buildings; innovative structures; environmentally responsive structures; bridges; stadiums; commercial and public buildings; transmission towers; television and telecommunication masts; foldable structures; cooling towers; plates and shells; suspension structures; protective structures; smart structures; nuclear reactors; dams; pressure vessels; pipelines; tunnels. Engineering Structures also publishes review articles, short communications and discussions, book reviews, and a diary on international events related to any aspect of structural engineering.
期刊最新文献
Modal parameter changes as function of drift in two shear wall buildings Study on active control for multilinear and nonlinear vibration in piezoelectric structures through a secondary channel improved method Three-dimensional dynamic analysis of transmission tower based on separation of background and resonant components of non-stationary downburst-induced response Energy absorption of 3D-printed PETG and PETG/CF sandwich structures with cellular cores subjected to low-velocity impact: Experimental and numerical analysis Hybrid retrofitting for upgrading the seismic performance of adjacent bridges vulnerable to different damage modes including pounding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1