Analysis of CYP701A1 genes in gossypium species and functional characterization through gene silencing

Zhao Liang , Di Jiachun , Guo Qi , Xu Zhenzhen , Zhao Jun , Xu Peng , Xu Jianwen , Liu Jianguang , Shen Xinlian , Chen Xusheng
{"title":"Analysis of CYP701A1 genes in gossypium species and functional characterization through gene silencing","authors":"Zhao Liang ,&nbsp;Di Jiachun ,&nbsp;Guo Qi ,&nbsp;Xu Zhenzhen ,&nbsp;Zhao Jun ,&nbsp;Xu Peng ,&nbsp;Xu Jianwen ,&nbsp;Liu Jianguang ,&nbsp;Shen Xinlian ,&nbsp;Chen Xusheng","doi":"10.1016/j.cropd.2024.100081","DOIUrl":null,"url":null,"abstract":"<div><div>Gibberellins (GA) are known to play crucial roles in various aspects of plant growth and development. The cytochrome P450 enzyme family is recognized for its significance in plant metabolic processes. Specifically, CYP701s, a subgroup of CYP71, encode <em>ent</em>-kaurene oxidase in the gibberellin synthesis pathway. In this study, we analyzed genomic data from 30 <em>Gossypium</em> species, including nine allotetraploid genomes (AD1-AD7, with two each for AD1 and AD2), 21 diploid genomes (A-G, K, with two A-genomes and 12 D-genomes), and <em>Gossypioides kirkii</em> genome as an outgroup for evolutionary analysis, totaling 31 genomes. Subsequently, 40 <em>CYP701A1</em> genes were identified from various genomes and conducted a comprehensive analysis of their structure and evolution. Virus-induced gene silencing (VIGS) technology was utilized to knock out the <em>GhCYP701A1</em> gene in <em>Gossypium hirsutum</em> ac TM-1. Subsequent analysis revealed changes in hormone content, with decreased gibberellin levels and notable increases in auxin, cytokinin, and jasmonic acid contents. Conversely, salicylic acid content decreased, while the precursor for ethylene synthesis, 1-aminocyclopropane-1-carboxylic acid (ACC), remained relatively stable. Transcriptome analysis of the gene silencing plants identified 15,962 differentially expressed genes, including 8376 upregulated and 7586 downregulated genes. Enrichment analysis through KEGG pathway highlighted ‘Plant hormone signal transduction’ as a prominent pathway with 234 differentially expressed genes. The study provided insights into the function and regulatory network of the gene.</div></div>","PeriodicalId":100341,"journal":{"name":"Crop Design","volume":"4 1","pages":"Article 100081"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Design","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772899424000302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Gibberellins (GA) are known to play crucial roles in various aspects of plant growth and development. The cytochrome P450 enzyme family is recognized for its significance in plant metabolic processes. Specifically, CYP701s, a subgroup of CYP71, encode ent-kaurene oxidase in the gibberellin synthesis pathway. In this study, we analyzed genomic data from 30 Gossypium species, including nine allotetraploid genomes (AD1-AD7, with two each for AD1 and AD2), 21 diploid genomes (A-G, K, with two A-genomes and 12 D-genomes), and Gossypioides kirkii genome as an outgroup for evolutionary analysis, totaling 31 genomes. Subsequently, 40 CYP701A1 genes were identified from various genomes and conducted a comprehensive analysis of their structure and evolution. Virus-induced gene silencing (VIGS) technology was utilized to knock out the GhCYP701A1 gene in Gossypium hirsutum ac TM-1. Subsequent analysis revealed changes in hormone content, with decreased gibberellin levels and notable increases in auxin, cytokinin, and jasmonic acid contents. Conversely, salicylic acid content decreased, while the precursor for ethylene synthesis, 1-aminocyclopropane-1-carboxylic acid (ACC), remained relatively stable. Transcriptome analysis of the gene silencing plants identified 15,962 differentially expressed genes, including 8376 upregulated and 7586 downregulated genes. Enrichment analysis through KEGG pathway highlighted ‘Plant hormone signal transduction’ as a prominent pathway with 234 differentially expressed genes. The study provided insights into the function and regulatory network of the gene.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of the B chromosome-located long non-coding RNAs on gene expression in maize Evaluation of different sesame varieties cultivated under saline conditions in the southwestern coastal region of Bangladesh Synthetic genomics in crop breeding: Evidence, opportunities and challenges Genome-wide association study and candidate gene identification for the cold tolerance at the seedling stage of rapeseed (Brassica napus L.) Analysis of CYP701A1 genes in gossypium species and functional characterization through gene silencing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1