{"title":"Context-Aware Dual-Task Deep Network for Concurrent Bone Segmentation and Clinical Assessment to Enhance Shoulder Arthroplasty Preoperative planning","authors":"Luca Marsilio;Andrea Moglia;Alfonso Manzotti;Pietro Cerveri","doi":"10.1109/OJEMB.2025.3527877","DOIUrl":null,"url":null,"abstract":"<italic>Goal:</i> Effective preoperative planning for shoulder joint replacement requires accurate glenohumeral joint (GH) digital surfaces and reliable clinical staging. <italic>Methods:</i> xCEL-UNet was designed as a dual-task deep network for humerus and scapula bone reconstruction in CT scans, and assessment of three GH joint clinical conditions, namely osteophyte size (OS), joint space reduction (JS), and humeroscapular alignment (HSA). <italic>Results:</i> Trained on a dataset of 571 patients, the model optimized segmentation and classification through transfer learning. It achieved median root mean squared errors of 0.31 and 0.24 mm, and Hausdorff distances of 2.35 and 3.28 mm for the humerus and scapula, respectively. Classification accuracy was 91 for OS, 93 for JS, and 85% for HSA. GradCAM-based activation maps validated the network's interpretability. <italic>Conclusions:</i> this framework delivers accurate 3D bone surface reconstructions and dependable clinical assessments of the GH joint, offering robust support for therapeutic decision-making in shoulder arthroplasty.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"6 ","pages":"269-278"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10835174","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Engineering in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10835174/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Goal: Effective preoperative planning for shoulder joint replacement requires accurate glenohumeral joint (GH) digital surfaces and reliable clinical staging. Methods: xCEL-UNet was designed as a dual-task deep network for humerus and scapula bone reconstruction in CT scans, and assessment of three GH joint clinical conditions, namely osteophyte size (OS), joint space reduction (JS), and humeroscapular alignment (HSA). Results: Trained on a dataset of 571 patients, the model optimized segmentation and classification through transfer learning. It achieved median root mean squared errors of 0.31 and 0.24 mm, and Hausdorff distances of 2.35 and 3.28 mm for the humerus and scapula, respectively. Classification accuracy was 91 for OS, 93 for JS, and 85% for HSA. GradCAM-based activation maps validated the network's interpretability. Conclusions: this framework delivers accurate 3D bone surface reconstructions and dependable clinical assessments of the GH joint, offering robust support for therapeutic decision-making in shoulder arthroplasty.
期刊介绍:
The IEEE Open Journal of Engineering in Medicine and Biology (IEEE OJEMB) is dedicated to serving the community of innovators in medicine, technology, and the sciences, with the core goal of advancing the highest-quality interdisciplinary research between these disciplines. The journal firmly believes that the future of medicine depends on close collaboration between biology and technology, and that fostering interaction between these fields is an important way to advance key discoveries that can improve clinical care.IEEE OJEMB is a gold open access journal in which the authors retain the copyright to their papers and readers have free access to the full text and PDFs on the IEEE Xplore® Digital Library. However, authors are required to pay an article processing fee at the time their paper is accepted for publication, using to cover the cost of publication.