Context-Aware Dual-Task Deep Network for Concurrent Bone Segmentation and Clinical Assessment to Enhance Shoulder Arthroplasty Preoperative planning

IF 2.7 Q3 ENGINEERING, BIOMEDICAL IEEE Open Journal of Engineering in Medicine and Biology Pub Date : 2025-01-09 DOI:10.1109/OJEMB.2025.3527877
Luca Marsilio;Andrea Moglia;Alfonso Manzotti;Pietro Cerveri
{"title":"Context-Aware Dual-Task Deep Network for Concurrent Bone Segmentation and Clinical Assessment to Enhance Shoulder Arthroplasty Preoperative planning","authors":"Luca Marsilio;Andrea Moglia;Alfonso Manzotti;Pietro Cerveri","doi":"10.1109/OJEMB.2025.3527877","DOIUrl":null,"url":null,"abstract":"<italic>Goal:</i> Effective preoperative planning for shoulder joint replacement requires accurate glenohumeral joint (GH) digital surfaces and reliable clinical staging. <italic>Methods:</i> xCEL-UNet was designed as a dual-task deep network for humerus and scapula bone reconstruction in CT scans, and assessment of three GH joint clinical conditions, namely osteophyte size (OS), joint space reduction (JS), and humeroscapular alignment (HSA). <italic>Results:</i> Trained on a dataset of 571 patients, the model optimized segmentation and classification through transfer learning. It achieved median root mean squared errors of 0.31 and 0.24 mm, and Hausdorff distances of 2.35 and 3.28 mm for the humerus and scapula, respectively. Classification accuracy was 91 for OS, 93 for JS, and 85% for HSA. GradCAM-based activation maps validated the network's interpretability. <italic>Conclusions:</i> this framework delivers accurate 3D bone surface reconstructions and dependable clinical assessments of the GH joint, offering robust support for therapeutic decision-making in shoulder arthroplasty.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"6 ","pages":"269-278"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10835174","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Engineering in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10835174/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Goal: Effective preoperative planning for shoulder joint replacement requires accurate glenohumeral joint (GH) digital surfaces and reliable clinical staging. Methods: xCEL-UNet was designed as a dual-task deep network for humerus and scapula bone reconstruction in CT scans, and assessment of three GH joint clinical conditions, namely osteophyte size (OS), joint space reduction (JS), and humeroscapular alignment (HSA). Results: Trained on a dataset of 571 patients, the model optimized segmentation and classification through transfer learning. It achieved median root mean squared errors of 0.31 and 0.24 mm, and Hausdorff distances of 2.35 and 3.28 mm for the humerus and scapula, respectively. Classification accuracy was 91 for OS, 93 for JS, and 85% for HSA. GradCAM-based activation maps validated the network's interpretability. Conclusions: this framework delivers accurate 3D bone surface reconstructions and dependable clinical assessments of the GH joint, offering robust support for therapeutic decision-making in shoulder arthroplasty.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.50
自引率
3.40%
发文量
20
审稿时长
10 weeks
期刊介绍: The IEEE Open Journal of Engineering in Medicine and Biology (IEEE OJEMB) is dedicated to serving the community of innovators in medicine, technology, and the sciences, with the core goal of advancing the highest-quality interdisciplinary research between these disciplines. The journal firmly believes that the future of medicine depends on close collaboration between biology and technology, and that fostering interaction between these fields is an important way to advance key discoveries that can improve clinical care.IEEE OJEMB is a gold open access journal in which the authors retain the copyright to their papers and readers have free access to the full text and PDFs on the IEEE Xplore® Digital Library. However, authors are required to pay an article processing fee at the time their paper is accepted for publication, using to cover the cost of publication.
期刊最新文献
2024 Index IEEE Open Journal of Engineering in Medicine and Biology Vol. 5 Front Cover Low-Rank Adaptation of Pre-Trained Large Vision Models for Improved Lung Nodule Malignancy Classification A Review on Deep Learning for Quality of Life Assessment Through the Use of Wearable Data Context-Aware Dual-Task Deep Network for Concurrent Bone Segmentation and Clinical Assessment to Enhance Shoulder Arthroplasty Preoperative planning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1