Liyue Zhang;Weijie Hong;Songsui Li;Wei Pan;Lianshan Yan;Bin Luo;Xihua Zou
{"title":"Multifunctional Photonic Reservoir Computing Based on Semiconductor Laser With Optical Feedback","authors":"Liyue Zhang;Weijie Hong;Songsui Li;Wei Pan;Lianshan Yan;Bin Luo;Xihua Zou","doi":"10.1109/JPHOT.2025.3528019","DOIUrl":null,"url":null,"abstract":"The human brain can efficiently handle multiple tasks simultaneously, with the structural segregation of brain regions closely linked to their functional specialization. In this paper, we propose and experimentally demonstrate multifunctional photonic reservoir computing (MPRC), inspired by this biological characteristic. The neuron states of the photonic reservoir are divided into distinct sections for different tasks by the designing of input matrix, and only a set of output weight matrix, applicable to all tasks, is ultimately trained. Therefore, MPRC is capable of handling multiple tasks simultaneously with a fixed set of parameters, mitigating the tedious process of hyperparameter optimization. The influence of neuron partition size and operating parameters on MPRC performance is studied systematically. Furthermore, the generalizability of MPRC is validated by performing four different tasks simultaneously. Finally, our results are experimentally demonstrated using semiconductor lasers with a time-delay feedback loop.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"17 1","pages":"1-7"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10836813","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10836813/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The human brain can efficiently handle multiple tasks simultaneously, with the structural segregation of brain regions closely linked to their functional specialization. In this paper, we propose and experimentally demonstrate multifunctional photonic reservoir computing (MPRC), inspired by this biological characteristic. The neuron states of the photonic reservoir are divided into distinct sections for different tasks by the designing of input matrix, and only a set of output weight matrix, applicable to all tasks, is ultimately trained. Therefore, MPRC is capable of handling multiple tasks simultaneously with a fixed set of parameters, mitigating the tedious process of hyperparameter optimization. The influence of neuron partition size and operating parameters on MPRC performance is studied systematically. Furthermore, the generalizability of MPRC is validated by performing four different tasks simultaneously. Finally, our results are experimentally demonstrated using semiconductor lasers with a time-delay feedback loop.
期刊介绍:
Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.