Design and Evaluation of a Universal IoT Datalogger

IF 2.3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE journal of radio frequency identification Pub Date : 2024-12-30 DOI:10.1109/JRFID.2024.3524125
Josip Šabić;Ivan Marasović;Mattia Ragnoli;Petar Šolić
{"title":"Design and Evaluation of a Universal IoT Datalogger","authors":"Josip Šabić;Ivan Marasović;Mattia Ragnoli;Petar Šolić","doi":"10.1109/JRFID.2024.3524125","DOIUrl":null,"url":null,"abstract":"Currently, monitoring systems in various fields rely on commercial technologies that can be costly and, more critically, lack integration with remote management solutions. These systems often present accessibility challenges for researchers and professionals who require data collection for in-depth analysis. In addition, the deployment of sensing devices within more complex networks can be difficult, hindering the scalability and effectiveness of these technologies. This work presents a flexible smart multitechnological datalogger based on an Internet of Things (IoT) structure that utilizes numerous Low Power Wide Area Network solutions, allowing remote analysis of the phenomenon and reducing the installation and management complexity. The designed system was developed at a lower cost than state-of-the-art dataloggers and tested in the hydric monitoring scenario. The results indicate that the system can sustain remote monitoring operations for a significant duration without frequent battery replacements, making it suitable for applications that require extended autonomous deployments.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"9 ","pages":"54-64"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal of radio frequency identification","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10818460/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, monitoring systems in various fields rely on commercial technologies that can be costly and, more critically, lack integration with remote management solutions. These systems often present accessibility challenges for researchers and professionals who require data collection for in-depth analysis. In addition, the deployment of sensing devices within more complex networks can be difficult, hindering the scalability and effectiveness of these technologies. This work presents a flexible smart multitechnological datalogger based on an Internet of Things (IoT) structure that utilizes numerous Low Power Wide Area Network solutions, allowing remote analysis of the phenomenon and reducing the installation and management complexity. The designed system was developed at a lower cost than state-of-the-art dataloggers and tested in the hydric monitoring scenario. The results indicate that the system can sustain remote monitoring operations for a significant duration without frequent battery replacements, making it suitable for applications that require extended autonomous deployments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
期刊最新文献
IEEE Council on RFID IEEE Journal of Radio Frequency Identification Publication Information 2024 Index IEEE Journal of Radio Frequency Identification Vol. 8 Wireless Anti-Counterfeiting Labels Using RF Oscillators With Graphene Quantum Capacitors Novel Electromagnetic Field Confinement Device Based on SIW Technology for RFID Near-Field Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1