Catalytic cracking and deoxygenation of cottonseed oil to yield light olefins over lanthanum-impregnated zeolite catalysts†

IF 5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL Sustainable Energy & Fuels Pub Date : 2025-01-06 DOI:10.1039/D4SE01037J
Sagar Dhanuskar, Satya Narayan Naik and Kamal Kishore Pant
{"title":"Catalytic cracking and deoxygenation of cottonseed oil to yield light olefins over lanthanum-impregnated zeolite catalysts†","authors":"Sagar Dhanuskar, Satya Narayan Naik and Kamal Kishore Pant","doi":"10.1039/D4SE01037J","DOIUrl":null,"url":null,"abstract":"<p >This work investigated the production of renewable hydrocarbons from cottonseed oil using catalytic cracking. In a continuous fixed bed reactor, cottonseed oil was catalytically upgraded to light olefins using HZSM-5 zeolite modified with 6 wt% La. The physicochemical characterization of both catalysts was carried out using XRD, BET, NH<small><sub>3</sub></small>-TPD, DSC-TGA, and FT-IR techniques. The amount of La doped into the microporous HZSM-5 catalyst was altered to optimize its structure and characteristics. The catalytic behavior of cottonseed oil during its decomposition was investigated using a redesigned HZSM-5 catalyst incorporating a rare-earth metal, <em>i.e.</em>, lanthanum, in its lattice. The new synthesized catalyst (6 wt% La/HZSM-5) showed improved characteristics in terms of activity along with a reduced reaction condition compared to those of the HZSM-5 catalyst. A significant decrement in the reaction temperature for high cottonseed oil conversion was observed, and the La-doped catalyst showed considerable activity and anti-coking performance compared to the HZSM-5 catalyst. In a time-on-stream experiment conducted at 500 °C for three hours, the optimized conditions produced the maximum light olefin yield (27 wt%) over 6 wt% La/HZSM-5. Considering several olefinic products, propylene–ethylene is noteworthy, whereas CO, CH<small><sub>4</sub></small>, and hydrogen are among the main gaseous components of the reaction, as confirmed by GC-FID, GC-TCD, GC-MS, and <small><sup>1</sup></small>H NMR studies. The study recorded the effect of operational parameters, including temperature and GHSV (0.038–0.38 h<small><sup>−1</sup></small>), on the yield of different compounds. Hence, the catalytic decomposition of cottonseed by microporous zeolite into valuable chemicals could be promising.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 3","pages":" 868-878"},"PeriodicalIF":5.0000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/se/d4se01037j","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This work investigated the production of renewable hydrocarbons from cottonseed oil using catalytic cracking. In a continuous fixed bed reactor, cottonseed oil was catalytically upgraded to light olefins using HZSM-5 zeolite modified with 6 wt% La. The physicochemical characterization of both catalysts was carried out using XRD, BET, NH3-TPD, DSC-TGA, and FT-IR techniques. The amount of La doped into the microporous HZSM-5 catalyst was altered to optimize its structure and characteristics. The catalytic behavior of cottonseed oil during its decomposition was investigated using a redesigned HZSM-5 catalyst incorporating a rare-earth metal, i.e., lanthanum, in its lattice. The new synthesized catalyst (6 wt% La/HZSM-5) showed improved characteristics in terms of activity along with a reduced reaction condition compared to those of the HZSM-5 catalyst. A significant decrement in the reaction temperature for high cottonseed oil conversion was observed, and the La-doped catalyst showed considerable activity and anti-coking performance compared to the HZSM-5 catalyst. In a time-on-stream experiment conducted at 500 °C for three hours, the optimized conditions produced the maximum light olefin yield (27 wt%) over 6 wt% La/HZSM-5. Considering several olefinic products, propylene–ethylene is noteworthy, whereas CO, CH4, and hydrogen are among the main gaseous components of the reaction, as confirmed by GC-FID, GC-TCD, GC-MS, and 1H NMR studies. The study recorded the effect of operational parameters, including temperature and GHSV (0.038–0.38 h−1), on the yield of different compounds. Hence, the catalytic decomposition of cottonseed by microporous zeolite into valuable chemicals could be promising.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
期刊最新文献
Back cover Retraction: Dual photocatalysis for CO2 reduction along with the oxidative coupling of benzylamines promoted by Cu/Cu2O@g-C3N4 under visible irradiation Back cover Catalytic cracking and deoxygenation of cottonseed oil to yield light olefins over lanthanum-impregnated zeolite catalysts† Impact of adsorption kinetics on the integration of temperature vacuum swing adsorption-based direct air capture (TVSA-DAC) with e-methanol production†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1