{"title":"Fabrications of Ι-Carrageenan/ε-Polylysine Hydrogel Beads for Curcumin Encapsulation and Controlled Release Behavior in Vitro","authors":"Jiaxiang Zang, Liling Song, Chang Ge, LanLan Zhang, Bakht Ramin Shah, Xianling Wei, Wei Xu","doi":"10.1007/s11483-025-09930-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the preparation of hydrogel beads through electrostatic interactions between Ι-carrageenan (IC) and ε-polylysine (ε-PL) using a dropwise method is reported. As the concentration of ε-PL increased, the degree of swelling of the hydrogel beads decreased. FTIR and XRD analyses revealed shifts in the absorption peaks, suggesting the formation of hydrogen bonding, electrostatic interactions in the hydrogel beads. TGA showed that the mass loss of the IC/ε-PL hydrogel beads was significantly lower compared to that of pure ε-PL. These results indicate that the IC component has a protective stabilizing effect on the hydrogel structure. ε-PL concentration of 2% yielded the highest encapsulation efficiency of curcumin (Cur) in the hydrogel beads. In vitro release studies showed that the hydrogel beads sustained the release of Cur and the release kinetics followed the first-order and Hixson-Crowell models. Collectively, these findings demonstrate that these hydrogel beads have the potential to be effective carriers of hydrophobic substances.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":564,"journal":{"name":"Food Biophysics","volume":"20 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Biophysics","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s11483-025-09930-5","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the preparation of hydrogel beads through electrostatic interactions between Ι-carrageenan (IC) and ε-polylysine (ε-PL) using a dropwise method is reported. As the concentration of ε-PL increased, the degree of swelling of the hydrogel beads decreased. FTIR and XRD analyses revealed shifts in the absorption peaks, suggesting the formation of hydrogen bonding, electrostatic interactions in the hydrogel beads. TGA showed that the mass loss of the IC/ε-PL hydrogel beads was significantly lower compared to that of pure ε-PL. These results indicate that the IC component has a protective stabilizing effect on the hydrogel structure. ε-PL concentration of 2% yielded the highest encapsulation efficiency of curcumin (Cur) in the hydrogel beads. In vitro release studies showed that the hydrogel beads sustained the release of Cur and the release kinetics followed the first-order and Hixson-Crowell models. Collectively, these findings demonstrate that these hydrogel beads have the potential to be effective carriers of hydrophobic substances.
期刊介绍:
Biophysical studies of foods and agricultural products involve research at the interface of chemistry, biology, and engineering, as well as the new interdisciplinary areas of materials science and nanotechnology. Such studies include but are certainly not limited to research in the following areas: the structure of food molecules, biopolymers, and biomaterials on the molecular, microscopic, and mesoscopic scales; the molecular basis of structure generation and maintenance in specific foods, feeds, food processing operations, and agricultural products; the mechanisms of microbial growth, death and antimicrobial action; structure/function relationships in food and agricultural biopolymers; novel biophysical techniques (spectroscopic, microscopic, thermal, rheological, etc.) for structural and dynamical characterization of food and agricultural materials and products; the properties of amorphous biomaterials and their influence on chemical reaction rate, microbial growth, or sensory properties; and molecular mechanisms of taste and smell.
A hallmark of such research is a dependence on various methods of instrumental analysis that provide information on the molecular level, on various physical and chemical theories used to understand the interrelations among biological molecules, and an attempt to relate macroscopic chemical and physical properties and biological functions to the molecular structure and microscopic organization of the biological material.