Xiaoling Xu, Lisha Ye, Chaohui Bao, Wen Hong, Kaiding Wang, Shicheng Qiu, Yaping Xu, Jigang Piao, Qinghua Yao
{"title":"Glutathione-responsive FA-CMC-GNA nanoparticles: a novel approach for enhanced delivery of gambogenic acid in lung cancer treatment","authors":"Xiaoling Xu, Lisha Ye, Chaohui Bao, Wen Hong, Kaiding Wang, Shicheng Qiu, Yaping Xu, Jigang Piao, Qinghua Yao","doi":"10.1007/s42114-024-01205-w","DOIUrl":null,"url":null,"abstract":"<div><p>One of the limitations of current anticancer nanomedicines in clinical applications is the efficiency of drug delivery in their nanocarrier systems. Therefore, we aimed to develop a nano-delivery system loaded with a hydrophobic drug for lung cancer treatment. Nanoparticles (FA-CMC-GNA NPs) were prepared using an emulsion solvent evaporation method, with a disulfide bond-crosslinked thiolated carboxymethyl cellulose as the backbone, encapsulating the hydrophobic drug gambogenic acid. The preparation process was optimized through single-factor experiments and response surface methodology to determine the optimal preparation conditions. The characterization of the physicochemical properties of FA-CMC-GNA NPs was conducted using various techniques, including scanning electron microscopy, dynamic light scattering, X-ray spectroscopy, thermogravimetric analysis, differential scanning calorimetry, and Fourier-transform infrared spectroscopy. The results showed that the nanoparticles exhibited uniform dispersion and spherical morphology with a particle size of approximately 193.3 nm. Additionally, FA-CMC-GNA NPs demonstrated significant glutathione (GSH)-responsive release behavior <i>in vitro</i>. The prepared FA-CMC-GNA NPs were internalized into A549 cells via folate receptor-mediated endocytosis and released gambogenic acid in response to GSH, resulting in a significant inhibitory effect on A549 cells. In conclusion, these findings suggest that FA-CMC-GNA NPs hold the potential to enhance the clinical application value of the hydrophobic drug gambogenic acid for lung cancer therapy.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"8 1","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42114-024-01205-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-01205-w","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
One of the limitations of current anticancer nanomedicines in clinical applications is the efficiency of drug delivery in their nanocarrier systems. Therefore, we aimed to develop a nano-delivery system loaded with a hydrophobic drug for lung cancer treatment. Nanoparticles (FA-CMC-GNA NPs) were prepared using an emulsion solvent evaporation method, with a disulfide bond-crosslinked thiolated carboxymethyl cellulose as the backbone, encapsulating the hydrophobic drug gambogenic acid. The preparation process was optimized through single-factor experiments and response surface methodology to determine the optimal preparation conditions. The characterization of the physicochemical properties of FA-CMC-GNA NPs was conducted using various techniques, including scanning electron microscopy, dynamic light scattering, X-ray spectroscopy, thermogravimetric analysis, differential scanning calorimetry, and Fourier-transform infrared spectroscopy. The results showed that the nanoparticles exhibited uniform dispersion and spherical morphology with a particle size of approximately 193.3 nm. Additionally, FA-CMC-GNA NPs demonstrated significant glutathione (GSH)-responsive release behavior in vitro. The prepared FA-CMC-GNA NPs were internalized into A549 cells via folate receptor-mediated endocytosis and released gambogenic acid in response to GSH, resulting in a significant inhibitory effect on A549 cells. In conclusion, these findings suggest that FA-CMC-GNA NPs hold the potential to enhance the clinical application value of the hydrophobic drug gambogenic acid for lung cancer therapy.
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.