Understanding double perovskite BCNF as a CO2 splitting catalyst for industrial decarbonisation

IF 23.2 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES Advanced Composites and Hybrid Materials Pub Date : 2025-02-07 DOI:10.1007/s42114-025-01253-w
Weiwei Zhao, Hongkun Ma, Zixuan Wang, Benjamin Grégoire, Ao Lin, Siyuan Dai, Xuefeng Lin, Ting Liang, Jie Chen, Tongtong Zhang, Yulong Ding
{"title":"Understanding double perovskite BCNF as a CO2 splitting catalyst for industrial decarbonisation","authors":"Weiwei Zhao,&nbsp;Hongkun Ma,&nbsp;Zixuan Wang,&nbsp;Benjamin Grégoire,&nbsp;Ao Lin,&nbsp;Siyuan Dai,&nbsp;Xuefeng Lin,&nbsp;Ting Liang,&nbsp;Jie Chen,&nbsp;Tongtong Zhang,&nbsp;Yulong Ding","doi":"10.1007/s42114-025-01253-w","DOIUrl":null,"url":null,"abstract":"<div><p>The foundation industry, particularly the steel sector, is one of the major sources of global CO<sub>2</sub> emissions, with each ton of steel produced using iron ores contributing approximately 1.4 (direct reduced iron-based process) to 2 (blast furnace-based process) tons of CO<sub>2</sub>, with ironmaking accounting for approximately 70% of these emission. Here, we present a study on the potential of using a double perovskite, Ba<sub>2</sub>Ca<sub>0.66</sub>Nb<sub>0.34</sub>FeO<sub>6-δ</sub> (BCNF), as a CO<sub>2</sub> splitting catalyst that converts CO<sub>2</sub> into carbon monoxide (CO), a reducing agent in ironmaking, which can be reintegrated into the ironmaking process to enable ‘in-process’ decarbonisation and facilitate close-loop carbon recirculation. The study combines thermodynamic modelling, molecular dynamics simulations, material characterisation, and lab-scale experimental system design, demonstrating the efficiency and practicality of the use of BCNF for CO<sub>2</sub> emission reduction at a moderate temperature range. Simultaneous Thermal Analysis and COMSOL-based simulations were employed to optimise reactor design, maximising CO yield. An economic analysis further supports the scalability of this technology for decarbonising the steelmaking industry, which bears significance with the broader applicability to other foundation industrial sectors, including non-ferrous metal smelting, cement, glass, ceramics, and chemicals. This innovation offers a promising pathway towards sustainable industrial practices and contributes to global efforts to address climate change challenges.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"8 1","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42114-025-01253-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-025-01253-w","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

The foundation industry, particularly the steel sector, is one of the major sources of global CO2 emissions, with each ton of steel produced using iron ores contributing approximately 1.4 (direct reduced iron-based process) to 2 (blast furnace-based process) tons of CO2, with ironmaking accounting for approximately 70% of these emission. Here, we present a study on the potential of using a double perovskite, Ba2Ca0.66Nb0.34FeO6-δ (BCNF), as a CO2 splitting catalyst that converts CO2 into carbon monoxide (CO), a reducing agent in ironmaking, which can be reintegrated into the ironmaking process to enable ‘in-process’ decarbonisation and facilitate close-loop carbon recirculation. The study combines thermodynamic modelling, molecular dynamics simulations, material characterisation, and lab-scale experimental system design, demonstrating the efficiency and practicality of the use of BCNF for CO2 emission reduction at a moderate temperature range. Simultaneous Thermal Analysis and COMSOL-based simulations were employed to optimise reactor design, maximising CO yield. An economic analysis further supports the scalability of this technology for decarbonising the steelmaking industry, which bears significance with the broader applicability to other foundation industrial sectors, including non-ferrous metal smelting, cement, glass, ceramics, and chemicals. This innovation offers a promising pathway towards sustainable industrial practices and contributes to global efforts to address climate change challenges.

Graphical Abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.00
自引率
21.40%
发文量
185
期刊介绍: Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field. The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest. Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials. Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.
期刊最新文献
Understanding double perovskite BCNF as a CO2 splitting catalyst for industrial decarbonisation The construction of a stable physical–chemical multi-crosslinking structure through a simplified FROMP strategy synergistically enhances the flame retardancy and mechanical properties of PDCPD Advanced selective adsorption of alizarin dye from wastewater using novel nanomagnetic molecularly imprinted polymers Electronic structure optimizing of Ru nanoparticles loaded on carbon via amorphous Pr2O3 for accelerating hydrogen production from ammonia decomposition Metabolic reprogramming of fibroblast-like synoviocytes with a supramolecular nano-drug for osteoarthritis therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1