A biomimetic magnetically responsive scaffold with tunable and stable compression for dynamic 3D cell culture

IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Science China Materials Pub Date : 2025-01-02 DOI:10.1007/s40843-024-3216-6
Xiao Sun  (, ), Xiaohong Wang  (, ), Bingjie Wu  (, ), Qianhong Yang  (, ), Congxiao Zhu  (, ), Huimin Zhang  (, ), Qian Li  (, ), Hongru Zhou  (, ), Minghui Guo  (, ), Lin Gui  (, ), Lei Li  (, )
{"title":"A biomimetic magnetically responsive scaffold with tunable and stable compression for dynamic 3D cell culture","authors":"Xiao Sun \n (,&nbsp;),&nbsp;Xiaohong Wang \n (,&nbsp;),&nbsp;Bingjie Wu \n (,&nbsp;),&nbsp;Qianhong Yang \n (,&nbsp;),&nbsp;Congxiao Zhu \n (,&nbsp;),&nbsp;Huimin Zhang \n (,&nbsp;),&nbsp;Qian Li \n (,&nbsp;),&nbsp;Hongru Zhou \n (,&nbsp;),&nbsp;Minghui Guo \n (,&nbsp;),&nbsp;Lin Gui \n (,&nbsp;),&nbsp;Lei Li \n (,&nbsp;)","doi":"10.1007/s40843-024-3216-6","DOIUrl":null,"url":null,"abstract":"<div><p>Magnetically responsive scaffolds are extensively utilized in tissue engineering for their ability to simulate dynamic three-dimensional (3D) cell microenvironment in a rapid, reversible, and contactless manner. However, existing magnetic scaffolds struggle to provide tunable dynamic compression comparable to natural tissues due to the weak magnetism of magnetic nanoparticles and the mechanical brittleness of hydrogels. Here, we propose a biomimetic 3D magnetic scaffold offering tunable and stable magnetically induced compression for dynamic 3D cell culture. By employing hard magnetic particles NdFeB@SiO<sub>2</sub> and a mechanically stable elastomer, Ecoflex, the scaffold achieves 15% compression in the magnetic field (240 mT). Moreover, this magnetic scaffold demonstrates remarkable deformation and mechanical stability during 4000 compression cycles. The magnetic scaffold exhibits stiffness (0.78 kPa) and viscoelasticity (relaxation time of 17 s) similar to adipose tissue. Notably, it is verified that human adipose-derived stem cells (hADSCs) are successfully cultured in this magnetic scaffold and the proliferation of hADSCs can be modulated by magnetically induced dynamic compression. This magnetic scaffold for dynamic 3D cell culture can be potentially utilized in cell biology and tissue engineering.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 2","pages":"652 - 665"},"PeriodicalIF":6.8000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3216-6","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetically responsive scaffolds are extensively utilized in tissue engineering for their ability to simulate dynamic three-dimensional (3D) cell microenvironment in a rapid, reversible, and contactless manner. However, existing magnetic scaffolds struggle to provide tunable dynamic compression comparable to natural tissues due to the weak magnetism of magnetic nanoparticles and the mechanical brittleness of hydrogels. Here, we propose a biomimetic 3D magnetic scaffold offering tunable and stable magnetically induced compression for dynamic 3D cell culture. By employing hard magnetic particles NdFeB@SiO2 and a mechanically stable elastomer, Ecoflex, the scaffold achieves 15% compression in the magnetic field (240 mT). Moreover, this magnetic scaffold demonstrates remarkable deformation and mechanical stability during 4000 compression cycles. The magnetic scaffold exhibits stiffness (0.78 kPa) and viscoelasticity (relaxation time of 17 s) similar to adipose tissue. Notably, it is verified that human adipose-derived stem cells (hADSCs) are successfully cultured in this magnetic scaffold and the proliferation of hADSCs can be modulated by magnetically induced dynamic compression. This magnetic scaffold for dynamic 3D cell culture can be potentially utilized in cell biology and tissue engineering.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Seismicity patterns before strong earthquakes in Greece
IF 2.3 4区 地球科学Acta GeophysicaPub Date : 2009-03-12 DOI: 10.2478/s11600-009-0004-y
Vassilis Karakostas
Seismicity patterns before strong earthquakes in Greece
IF 2.3 4区 地球科学Acta GeophysicaPub Date : 2009-03-12 DOI: 10.2478/S11600-009-0004-Y
V. Karakostas
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
期刊最新文献
Anomalously ultra-strong anti-Stokes photoluminescence in submicrometer-thick van der Waals layered semiconductor PbI2 Realizing temperature-gated photochromic NaYTiO4:Bi3+ for a time–temperature indicator Modulating luminescence of K3AlF6:Mn4+ NCs via charge compensation and localized surface plasmon resonance effect Highly efficient photocatalytic generation of hydrogen peroxide via pyrene-anthraquinone structural covalent organic frameworks Bioinspired fabrication of graphene/PDMS composite materials for high-performance flexible pressure sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1