Vahid Rabiei Faradonbeh, Soheil Salahshour, Davood Toghraie
{"title":"Advancing micromixing techniques: the role of surface acoustic waves and fluid–structure interaction in non-newtonian fluids","authors":"Vahid Rabiei Faradonbeh, Soheil Salahshour, Davood Toghraie","doi":"10.1007/s10404-025-02787-7","DOIUrl":null,"url":null,"abstract":"<div><p>This study numerically investigated the enhancement of micromixing efficiency through integrating surface acoustic waves (SAWs) and hyper-elastic channel walls, modeled using a power-law fluid representative of human blood flow. The governing equations are systematically divided into zeroth, first, and second orders based on perturbation theory. This facilitates the development of a fully coupled two-way fluid–structure interaction (FSI) framework implemented via the Arbitrary Lagrangian–Eulerian (ALE) method. The combination of SAWs and hyper-elastic materials demonstrated a marked improvement in mixing efficiency, increasing from 0 to 0.99, alongside a significant reduction in pressure drop within the microchannel. The interaction between SAWs and the deformable walls induces localized instabilities and shear stresses that effectively disrupt the laminar flow, promoting enhanced mixing. The study highlights the critical role of hyper-elastic walls in modulating normal forces on the fluid and reducing pressure drop, offering insights into the interaction between fluid viscosity, acoustic pressure fields, and flow dynamics. These findings provide a framework for designing micromixers with optimized efficiency and reduced channel length, offering practical advancements in microfluidic systems.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"29 3","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microfluidics and Nanofluidics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10404-025-02787-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
This study numerically investigated the enhancement of micromixing efficiency through integrating surface acoustic waves (SAWs) and hyper-elastic channel walls, modeled using a power-law fluid representative of human blood flow. The governing equations are systematically divided into zeroth, first, and second orders based on perturbation theory. This facilitates the development of a fully coupled two-way fluid–structure interaction (FSI) framework implemented via the Arbitrary Lagrangian–Eulerian (ALE) method. The combination of SAWs and hyper-elastic materials demonstrated a marked improvement in mixing efficiency, increasing from 0 to 0.99, alongside a significant reduction in pressure drop within the microchannel. The interaction between SAWs and the deformable walls induces localized instabilities and shear stresses that effectively disrupt the laminar flow, promoting enhanced mixing. The study highlights the critical role of hyper-elastic walls in modulating normal forces on the fluid and reducing pressure drop, offering insights into the interaction between fluid viscosity, acoustic pressure fields, and flow dynamics. These findings provide a framework for designing micromixers with optimized efficiency and reduced channel length, offering practical advancements in microfluidic systems.
期刊介绍:
Microfluidics and Nanofluidics is an international peer-reviewed journal that aims to publish papers in all aspects of microfluidics, nanofluidics and lab-on-a-chip science and technology. The objectives of the journal are to (1) provide an overview of the current state of the research and development in microfluidics, nanofluidics and lab-on-a-chip devices, (2) improve the fundamental understanding of microfluidic and nanofluidic phenomena, and (3) discuss applications of microfluidics, nanofluidics and lab-on-a-chip devices. Topics covered in this journal include:
1.000 Fundamental principles of micro- and nanoscale phenomena like,
flow, mass transport and reactions
3.000 Theoretical models and numerical simulation with experimental and/or analytical proof
4.000 Novel measurement & characterization technologies
5.000 Devices (actuators and sensors)
6.000 New unit-operations for dedicated microfluidic platforms
7.000 Lab-on-a-Chip applications
8.000 Microfabrication technologies and materials
Please note, Microfluidics and Nanofluidics does not publish manuscripts studying pure microscale heat transfer since there are many journals that cover this field of research (Journal of Heat Transfer, Journal of Heat and Mass Transfer, Journal of Heat and Fluid Flow, etc.).