Heuristic modeling of material properties in Nano/Angstrom-scale channels: integrating experimental observations and MD simulations

IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Microfluidics and Nanofluidics Pub Date : 2025-02-08 DOI:10.1007/s10404-025-02788-6
Himanshu Mishra, Ashish Garg
{"title":"Heuristic modeling of material properties in Nano/Angstrom-scale channels: integrating experimental observations and MD simulations","authors":"Himanshu Mishra,&nbsp;Ashish Garg","doi":"10.1007/s10404-025-02788-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we propose a unified framework to describe three key atomic-scale fluid properties-density, viscosity, and slip length-within nanoscale channels. These properties, which deviate significantly from bulk behavior, are expressed using simple power-law models as functions of the nanochannel height. The proposed framework accurately captures experimental and simulation data, providing a more flexible and interpretable alternative to existing complex or disparate models. The key advantage of our model lies in its mathematical properties. Continuity and a continuous derivative ensure seamless implementation into numerical simulations and theoretical predictions, leading to more understandable, stable, and accurate results. Additionally, the model adheres to physical principles, predicting convergence to bulk properties as channel size increases. Further, compared to existing exponential models, the unified power-law modeling approach offers several advantages. It provides flexibility by capturing nonlinear relationships and diverse data curvatures, interpretability through physically meaningful parameters, and adaptability for integration with other functions to model complex phenomena. Its simplicity facilitates easy parameter estimation, model interpretation, and computational efficiency. Moreover, its robustness makes it less sensitive to outliers and noise while maintaining fewer parameters that directly correspond to underlying physics and scaling laws. Hence, the proposed model’s simplicity, smoothness, physical validity, and generality establish it as a significant heuristic tool for the efficient design and optimization of nanoscale devices, utilizing theory and simulations across a wide range of applications.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"29 3","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microfluidics and Nanofluidics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10404-025-02788-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a unified framework to describe three key atomic-scale fluid properties-density, viscosity, and slip length-within nanoscale channels. These properties, which deviate significantly from bulk behavior, are expressed using simple power-law models as functions of the nanochannel height. The proposed framework accurately captures experimental and simulation data, providing a more flexible and interpretable alternative to existing complex or disparate models. The key advantage of our model lies in its mathematical properties. Continuity and a continuous derivative ensure seamless implementation into numerical simulations and theoretical predictions, leading to more understandable, stable, and accurate results. Additionally, the model adheres to physical principles, predicting convergence to bulk properties as channel size increases. Further, compared to existing exponential models, the unified power-law modeling approach offers several advantages. It provides flexibility by capturing nonlinear relationships and diverse data curvatures, interpretability through physically meaningful parameters, and adaptability for integration with other functions to model complex phenomena. Its simplicity facilitates easy parameter estimation, model interpretation, and computational efficiency. Moreover, its robustness makes it less sensitive to outliers and noise while maintaining fewer parameters that directly correspond to underlying physics and scaling laws. Hence, the proposed model’s simplicity, smoothness, physical validity, and generality establish it as a significant heuristic tool for the efficient design and optimization of nanoscale devices, utilizing theory and simulations across a wide range of applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Microfluidics and Nanofluidics
Microfluidics and Nanofluidics 工程技术-纳米科技
CiteScore
4.80
自引率
3.60%
发文量
97
审稿时长
2 months
期刊介绍: Microfluidics and Nanofluidics is an international peer-reviewed journal that aims to publish papers in all aspects of microfluidics, nanofluidics and lab-on-a-chip science and technology. The objectives of the journal are to (1) provide an overview of the current state of the research and development in microfluidics, nanofluidics and lab-on-a-chip devices, (2) improve the fundamental understanding of microfluidic and nanofluidic phenomena, and (3) discuss applications of microfluidics, nanofluidics and lab-on-a-chip devices. Topics covered in this journal include: 1.000 Fundamental principles of micro- and nanoscale phenomena like, flow, mass transport and reactions 3.000 Theoretical models and numerical simulation with experimental and/or analytical proof 4.000 Novel measurement & characterization technologies 5.000 Devices (actuators and sensors) 6.000 New unit-operations for dedicated microfluidic platforms 7.000 Lab-on-a-Chip applications 8.000 Microfabrication technologies and materials Please note, Microfluidics and Nanofluidics does not publish manuscripts studying pure microscale heat transfer since there are many journals that cover this field of research (Journal of Heat Transfer, Journal of Heat and Mass Transfer, Journal of Heat and Fluid Flow, etc.).
期刊最新文献
Heuristic modeling of material properties in Nano/Angstrom-scale channels: integrating experimental observations and MD simulations Enhancement in electroosmotic mixing in obstruction-laden microchannels Advancing micromixing techniques: the role of surface acoustic waves and fluid–structure interaction in non-newtonian fluids Comprehensive characterization of a microfluidic platform for DEP manipulation and bio-impedance detection using multi-sized polystyrene microbeads A novel approach to detect CD4 T-lymphocytes using a microfluidic chip and compact signal processing circuit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1