An investigation of crack propagation in porous quasi-brittle structures using isogeometric analysis and higher-order phase-field theory

IF 2.2 3区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY International Journal of Fracture Pub Date : 2025-01-22 DOI:10.1007/s10704-024-00824-0
Khuong D. Nguyen, Tran Minh Thi
{"title":"An investigation of crack propagation in porous quasi-brittle structures using isogeometric analysis and higher-order phase-field theory","authors":"Khuong D. Nguyen,&nbsp;Tran Minh Thi","doi":"10.1007/s10704-024-00824-0","DOIUrl":null,"url":null,"abstract":"<div><p>This article introduces a novel method for investigating crack propagation in porous quasi-brittle structures. The method combines isogeometric analysis (IGA) with higher-order phase-field theory. IGA is particularly useful for representing complex geometries through high-order Non-Uniform Rational B-Spline (NURBS)-based elements. It gives it an advantage over conventional methods that rely on enriched nodes. The phase-field approach uses a scalar field to implicitly define the trajectory of cracks, eliminating the need to predefine an initial crack location. The study was conducted on a porous plate model with multiple perforations. The porosity level significantly affects the structural integrity of the domain under consideration. The degradation functions that characterize material softening concerning porosity are obtained through careful examination. These degradation functions are further implemented into numerical problems to observe the effect of porosity on crack initiation and propagation behavior. The results have demonstrated the proposed approach’s efficiency and accuracy in analyzing porous concrete’s failure behavior. The analysis results contribute to advancing our understanding of crack propagation and showcase the efficacy of the presented methodological framework in enhancing predictive capabilities in structural mechanics.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"249 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fracture","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10704-024-00824-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This article introduces a novel method for investigating crack propagation in porous quasi-brittle structures. The method combines isogeometric analysis (IGA) with higher-order phase-field theory. IGA is particularly useful for representing complex geometries through high-order Non-Uniform Rational B-Spline (NURBS)-based elements. It gives it an advantage over conventional methods that rely on enriched nodes. The phase-field approach uses a scalar field to implicitly define the trajectory of cracks, eliminating the need to predefine an initial crack location. The study was conducted on a porous plate model with multiple perforations. The porosity level significantly affects the structural integrity of the domain under consideration. The degradation functions that characterize material softening concerning porosity are obtained through careful examination. These degradation functions are further implemented into numerical problems to observe the effect of porosity on crack initiation and propagation behavior. The results have demonstrated the proposed approach’s efficiency and accuracy in analyzing porous concrete’s failure behavior. The analysis results contribute to advancing our understanding of crack propagation and showcase the efficacy of the presented methodological framework in enhancing predictive capabilities in structural mechanics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Fracture
International Journal of Fracture 物理-材料科学:综合
CiteScore
4.80
自引率
8.00%
发文量
74
审稿时长
13.5 months
期刊介绍: The International Journal of Fracture is an outlet for original analytical, numerical and experimental contributions which provide improved understanding of the mechanisms of micro and macro fracture in all materials, and their engineering implications. The Journal is pleased to receive papers from engineers and scientists working in various aspects of fracture. Contributions emphasizing empirical correlations, unanalyzed experimental results or routine numerical computations, while representing important necessary aspects of certain fatigue, strength, and fracture analyses, will normally be discouraged; occasional review papers in these as well as other areas are welcomed. Innovative and in-depth engineering applications of fracture theory are also encouraged. In addition, the Journal welcomes, for rapid publication, Brief Notes in Fracture and Micromechanics which serve the Journal''s Objective. Brief Notes include: Brief presentation of a new idea, concept or method; new experimental observations or methods of significance; short notes of quality that do not amount to full length papers; discussion of previously published work in the Journal, and Brief Notes Errata.
期刊最新文献
Numerical study of multi-stage hydraulic fracture propagation behaviors in triaxial stress state under different mining stages Length scales in the tear resistance of soft tissues and elastomers: a comparative study based on computational models The impact of hydrogen flakes on the uniaxial and biaxial fracture toughness of a forged ferritic steel Small-scale domain switching near sharp piezoelectric bi-material notches Modelling of ductile fracture considering the effect of stress triaxiality and the energy partition theory in thin high-strength steel sheets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1