Ecoflex-assisted quasi-solid-state flexible hybrid supercapacitors based on binder-free nanoflower-like CoxMo3-xS3 and Te-infused radish-derived bio-carbon for sensing and healthcare applications
Edugulla Girija Shankar, Mandar Vasant Paranjape, Jae Su Yu
{"title":"Ecoflex-assisted quasi-solid-state flexible hybrid supercapacitors based on binder-free nanoflower-like CoxMo3-xS3 and Te-infused radish-derived bio-carbon for sensing and healthcare applications","authors":"Edugulla Girija Shankar, Mandar Vasant Paranjape, Jae Su Yu","doi":"10.1007/s42114-025-01228-x","DOIUrl":null,"url":null,"abstract":"<div><p>Advancements in electronic devices have driven the fabrication of flexible supercapacitors (SCs) to power electronic devices in twisted or bent states. In this regard, we report the fabrication of nanoflower-like arrays of cobalt molybdenum sulfide (Co<sub>x</sub>Mo<sub>3-x</sub>S<sub>3</sub>) on flexible and conductive carbon cloth via a facile single-step electrodeposition technique as a positive electrode. The morphological, physiochemical, and electrochemical characteristics of the corresponding electrodes are evaluated. For optimization, the Co<sub>x</sub>Mo<sub>3-x</sub>S<sub>3</sub> electrodes with various stoichiometric ratios of Co/Mo in the precursor solution are fabricated. The optimized Co<sub>x</sub>Mo<sub>3-x</sub>S electrode shows a maximum areal capacitance value of 1008.7 mF cm<sup>−2</sup> at 2 mA cm<sup>−2</sup> and an excellent life duration with areal capacitance retention value of ~ 100% over 10,000 galvanostatic charge–discharge (GCD) cycles. Furthermore, Te-infused carbon derived from radish is explored as a green negative electrode. A flexible hybrid SC (FHSC) device is fabricated using optimized Co<sub>x</sub>Mo<sub>3-x</sub>S<sub>3</sub> and Te-infused radish-derived bio-carbon as the positive and negative electrodes, respectively. The corresponding FHSC device exhibits excellent electrochemical properties with power and energy density values of 7500 W kg<sup>−1</sup> and 19.2 Wh kg<sup>−1</sup>, respectively, followed by outstanding long-term durability with a specific capacitance retention value of ~ 100% over 10,000 GCD cycles. Finally, the FHSC device successfully powers various electronic gadgets in contorted states, thereby demonstrating its practical feasibility. The ecoflex-packaged FHSC device is also employed to power temperature and humidity sensors in the wearable condition for wireless internet of things applications.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"8 1","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42114-025-01228-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-025-01228-x","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Advancements in electronic devices have driven the fabrication of flexible supercapacitors (SCs) to power electronic devices in twisted or bent states. In this regard, we report the fabrication of nanoflower-like arrays of cobalt molybdenum sulfide (CoxMo3-xS3) on flexible and conductive carbon cloth via a facile single-step electrodeposition technique as a positive electrode. The morphological, physiochemical, and electrochemical characteristics of the corresponding electrodes are evaluated. For optimization, the CoxMo3-xS3 electrodes with various stoichiometric ratios of Co/Mo in the precursor solution are fabricated. The optimized CoxMo3-xS electrode shows a maximum areal capacitance value of 1008.7 mF cm−2 at 2 mA cm−2 and an excellent life duration with areal capacitance retention value of ~ 100% over 10,000 galvanostatic charge–discharge (GCD) cycles. Furthermore, Te-infused carbon derived from radish is explored as a green negative electrode. A flexible hybrid SC (FHSC) device is fabricated using optimized CoxMo3-xS3 and Te-infused radish-derived bio-carbon as the positive and negative electrodes, respectively. The corresponding FHSC device exhibits excellent electrochemical properties with power and energy density values of 7500 W kg−1 and 19.2 Wh kg−1, respectively, followed by outstanding long-term durability with a specific capacitance retention value of ~ 100% over 10,000 GCD cycles. Finally, the FHSC device successfully powers various electronic gadgets in contorted states, thereby demonstrating its practical feasibility. The ecoflex-packaged FHSC device is also employed to power temperature and humidity sensors in the wearable condition for wireless internet of things applications.
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.