Chemical Composition, Mineralogy, and Physical Properties of the Moon’s Mantle: A Review

IF 0.7 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS Geochemistry International Pub Date : 2025-01-27 DOI:10.1134/S0016702924700733
O. L. Kuskov, E. V. Kronrod, V. A. Kronrod
{"title":"Chemical Composition, Mineralogy, and Physical Properties of the Moon’s Mantle: A Review","authors":"O. L. Kuskov,&nbsp;E. V. Kronrod,&nbsp;V. A. Kronrod","doi":"10.1134/S0016702924700733","DOIUrl":null,"url":null,"abstract":"<p>The problem of the internal structure of the Moon plays a special role in understanding its geochemistry and geophysics. The principal sources of information about the chemical composition and physical state of the deep interior are seismic experiments of the Apollo expeditions, gravity data from the GRAIL mission, and geochemical and isotopic studies of lunar samples. Despite the high degree of similarity of terrestrial and lunar matter in the isotopic composition of several elements, the problem of the similarity and/or difference in the major-component composition of the silicate shells of the Earth and its satellite remains unresolved. This review paper summarizes and critically analyzes information on the composition and structure of the Moon, examines the main contradictions between geochemical and geophysical classes models for the mantle structure, both within each class and between the classes, related to the estimation of the abundance of Fe, Mg, Si, Al, and Ca oxides, and analyzes bulk silicate Moon (BSM) models. The paper describes the principles of the approach to modeling the internal structure of a planetary body, based on the joint inversion of an integrated set of selenophysical, seismic, and geochemical parameters combined with calculations of phase equilibria and physical properties. Two new classes of the chemical composition of the Moon enriched in silica (∼50% SiO<sub>2</sub>) and ferrous iron (11–13% FeO, Mg# 79–81) relative to the bulk composition of the silicate component of the Earth (BSE) are discussed: (i) models E with terrestrial concentrations of CaO and Al<sub>2</sub>O<sub>3</sub> (Earth-like models) and (ii) models M with higher contents of refractory oxides (Moon-like models), which determine the features of the mineralogical and seismic structure of the lunar interior. A probabilistic distribution of geochemical (oxide concentrations) and geophysical (<i>P</i>-, <i>S</i>-wave velocities and density) parameters in the four-layer lunar mantle within the range of permissible selenotherms was obtained. Systematic differences are revealed between contents of major oxides in the silicate shells of the Earth and the Moon. Calculations were carried out for the mineral composition, <i>P</i>-, <i>S</i>-wave velocities, and density of the E/M models, and two classes of conceptual geochemical models: LPUM (Lunar Primitive Upper Mantle) and TWM (Taylor Whole Moon) with Earth’s silica content (∼45 wt % SiO<sub>2</sub>) and different FeO and Al<sub>2</sub>O<sub>3</sub> contents. Arguments are presented in support of the SiO<sub>2</sub>- and FeO-enriched (olivine pyroxenite) lunar mantle, which has no genetic similarity with Earth’s pyrolitic mantle, as a geochemical consequence of the inversion of geophysical parameters and determined by cosmochemical conditions and the mechanism that formed the Moon. The dominant mineral of the lunar upper mantle is high-magnesium orthopyroxene with a low calcium content (rather than olivine), as confirmed by Apollo seismic data and supported by spacecraft analysis of spectral data from a number of impact basin rocks. In contrast, the <i>P</i>- and <i>S</i>-wave velocities of the TWM and LPUM geochemical models, in which olivine is the dominant mineral of the lunar mantle, do not match Apollo seismic data. The geochemical constraints in the scenarios for the formation of the Moon are considered. The simultaneous enrichment of the Moon in both SiO<sub>2</sub> and FeO relative to the pyrolitic mantle of the Earth is incompatible with the formation of the Moon as a result of a giant impact from terrestrial matter or an impact body (bodies) of chondritic composition and is in conflict with modern scenarios of the formation of the Moon and with similarities in the isotopic compositions of lunar and terrestrial samples. The problem of how to fit these different geochemical factors into the Procrustean bed of cosmogonic models for the Earth–Moon system formation is discussed.</p>","PeriodicalId":12781,"journal":{"name":"Geochemistry International","volume":"62 12","pages":"1227 - 1290"},"PeriodicalIF":0.7000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S0016702924700733.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry International","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0016702924700733","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The problem of the internal structure of the Moon plays a special role in understanding its geochemistry and geophysics. The principal sources of information about the chemical composition and physical state of the deep interior are seismic experiments of the Apollo expeditions, gravity data from the GRAIL mission, and geochemical and isotopic studies of lunar samples. Despite the high degree of similarity of terrestrial and lunar matter in the isotopic composition of several elements, the problem of the similarity and/or difference in the major-component composition of the silicate shells of the Earth and its satellite remains unresolved. This review paper summarizes and critically analyzes information on the composition and structure of the Moon, examines the main contradictions between geochemical and geophysical classes models for the mantle structure, both within each class and between the classes, related to the estimation of the abundance of Fe, Mg, Si, Al, and Ca oxides, and analyzes bulk silicate Moon (BSM) models. The paper describes the principles of the approach to modeling the internal structure of a planetary body, based on the joint inversion of an integrated set of selenophysical, seismic, and geochemical parameters combined with calculations of phase equilibria and physical properties. Two new classes of the chemical composition of the Moon enriched in silica (∼50% SiO2) and ferrous iron (11–13% FeO, Mg# 79–81) relative to the bulk composition of the silicate component of the Earth (BSE) are discussed: (i) models E with terrestrial concentrations of CaO and Al2O3 (Earth-like models) and (ii) models M with higher contents of refractory oxides (Moon-like models), which determine the features of the mineralogical and seismic structure of the lunar interior. A probabilistic distribution of geochemical (oxide concentrations) and geophysical (P-, S-wave velocities and density) parameters in the four-layer lunar mantle within the range of permissible selenotherms was obtained. Systematic differences are revealed between contents of major oxides in the silicate shells of the Earth and the Moon. Calculations were carried out for the mineral composition, P-, S-wave velocities, and density of the E/M models, and two classes of conceptual geochemical models: LPUM (Lunar Primitive Upper Mantle) and TWM (Taylor Whole Moon) with Earth’s silica content (∼45 wt % SiO2) and different FeO and Al2O3 contents. Arguments are presented in support of the SiO2- and FeO-enriched (olivine pyroxenite) lunar mantle, which has no genetic similarity with Earth’s pyrolitic mantle, as a geochemical consequence of the inversion of geophysical parameters and determined by cosmochemical conditions and the mechanism that formed the Moon. The dominant mineral of the lunar upper mantle is high-magnesium orthopyroxene with a low calcium content (rather than olivine), as confirmed by Apollo seismic data and supported by spacecraft analysis of spectral data from a number of impact basin rocks. In contrast, the P- and S-wave velocities of the TWM and LPUM geochemical models, in which olivine is the dominant mineral of the lunar mantle, do not match Apollo seismic data. The geochemical constraints in the scenarios for the formation of the Moon are considered. The simultaneous enrichment of the Moon in both SiO2 and FeO relative to the pyrolitic mantle of the Earth is incompatible with the formation of the Moon as a result of a giant impact from terrestrial matter or an impact body (bodies) of chondritic composition and is in conflict with modern scenarios of the formation of the Moon and with similarities in the isotopic compositions of lunar and terrestrial samples. The problem of how to fit these different geochemical factors into the Procrustean bed of cosmogonic models for the Earth–Moon system formation is discussed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Geochemistry International
Geochemistry International 地学-地球化学与地球物理
CiteScore
1.60
自引率
12.50%
发文量
89
审稿时长
1 months
期刊介绍: Geochemistry International is a peer reviewed journal that publishes articles on cosmochemistry; geochemistry of magmatic, metamorphic, hydrothermal, and sedimentary processes; isotope geochemistry; organic geochemistry; applied geochemistry; and chemistry of the environment. Geochemistry International provides readers with a unique opportunity to refine their understanding of the geology of the vast territory of the Eurasian continent. The journal welcomes manuscripts from all countries in the English or Russian language.
期刊最新文献
Shaka Ridge (South Atlantic)—a Remnant of Continental Crust? The Formation of K-Cymrite in Subduction Zones and Its Potential for Transport of Potassium, Water, and Nitrogen into the Mantle Kinetics of Individual C1–C5 Hydrocarbons Formation of Domanik Shale in Hydrothermal Experiments Chemical Composition, Mineralogy, and Physical Properties of the Moon’s Mantle: A Review Speciation of Chemical Elements in the Waters of the Herberz Historical Mine, Karelia, Russia: Thermodynamic Calculations and Fractionation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1