Sohail M. A. K. Mohammed, Ambreen Nisar, Denny John, Abhijith K. Sukumaran, Yifei Fu, Tanaji Paul, Alexander F. Hernandez, Sudipta Seal, Arvind Agarwal
{"title":"Boron nitride nanotubes induced strengthening in aluminum 7075 composite via cryomilling and spark plasma sintering","authors":"Sohail M. A. K. Mohammed, Ambreen Nisar, Denny John, Abhijith K. Sukumaran, Yifei Fu, Tanaji Paul, Alexander F. Hernandez, Sudipta Seal, Arvind Agarwal","doi":"10.1007/s42114-024-01173-1","DOIUrl":null,"url":null,"abstract":"<div><p>Al7075 is among the strongest commercial aluminum alloys with low density, making it a standout choice for structural metals. However, the never-ending quest for higher strength and low-density materials demands structural metals stronger than Al7075. In this study, high-strength and chemically inert one-dimensional boron nitride nanotubes (BNNTs) are used to reinforce Al7075 alloy, making ultra-high strength aluminum matrix composite. Al7075-BNNT composite is fabricated using a multi-step process involving ultrasonication, cryomilling, and spark plasma sintering (SPS). Ultra-fine grains were efficiently achieved in 2 h of milling, resulting in an impressive ultimate strength of ~ 636.8 ± 18.9 MPa and elongation up to necking of 10.1 ± 0.5% in heat-treated Al7075-BNNT composite. The obtained strength is 1.3 times higher than SPS Al7075 and 2.9 times higher than cast Al7075 alloy. The cryomilling facilitated a homogeneous dispersion of BNNTs, fostering effective interfacial bonding, albeit leading to variations in BNNT length ranging from 1–50 µm. The interplay between BNNT lengths and their impact on mechanical properties is explored, showcasing a synergistic improvement in strength and elongation. The comprehensive understanding of the resulting strengthening mechanisms encompasses Hall–Petch, Orowan, dislocation-induced strengthening, and dominant load transfer mechanisms. These findings offer valuable insights into fabricating high-performance aluminum matrix composites surpassing conventional strength. The Al7075-BNNT composite's unprecedented mechanical strength could further extend the use of aluminum alloys to more demanding aerospace applications, such as spacecraft structures and next-generation vehicles, as well as racing and automotive parts where the need for ultra-lightweight yet ultra-strong materials is paramount for fuel efficiency and performance under extreme conditions.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"8 1","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42114-024-01173-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-01173-1","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Al7075 is among the strongest commercial aluminum alloys with low density, making it a standout choice for structural metals. However, the never-ending quest for higher strength and low-density materials demands structural metals stronger than Al7075. In this study, high-strength and chemically inert one-dimensional boron nitride nanotubes (BNNTs) are used to reinforce Al7075 alloy, making ultra-high strength aluminum matrix composite. Al7075-BNNT composite is fabricated using a multi-step process involving ultrasonication, cryomilling, and spark plasma sintering (SPS). Ultra-fine grains were efficiently achieved in 2 h of milling, resulting in an impressive ultimate strength of ~ 636.8 ± 18.9 MPa and elongation up to necking of 10.1 ± 0.5% in heat-treated Al7075-BNNT composite. The obtained strength is 1.3 times higher than SPS Al7075 and 2.9 times higher than cast Al7075 alloy. The cryomilling facilitated a homogeneous dispersion of BNNTs, fostering effective interfacial bonding, albeit leading to variations in BNNT length ranging from 1–50 µm. The interplay between BNNT lengths and their impact on mechanical properties is explored, showcasing a synergistic improvement in strength and elongation. The comprehensive understanding of the resulting strengthening mechanisms encompasses Hall–Petch, Orowan, dislocation-induced strengthening, and dominant load transfer mechanisms. These findings offer valuable insights into fabricating high-performance aluminum matrix composites surpassing conventional strength. The Al7075-BNNT composite's unprecedented mechanical strength could further extend the use of aluminum alloys to more demanding aerospace applications, such as spacecraft structures and next-generation vehicles, as well as racing and automotive parts where the need for ultra-lightweight yet ultra-strong materials is paramount for fuel efficiency and performance under extreme conditions.
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.