Hierarchical Porous Rod-Like In2S3/In2O3 Structures for Trimethylamine Detection

IF 2.6 4区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY ChemNanoMat Pub Date : 2024-12-01 DOI:10.1002/cnma.202400507
Dan Meng, Yubo Pan, Lei Zhang, Yue Zhang, Chun He, Kai Tao, Size Li, Xiaoguang San
{"title":"Hierarchical Porous Rod-Like In2S3/In2O3 Structures for Trimethylamine Detection","authors":"Dan Meng,&nbsp;Yubo Pan,&nbsp;Lei Zhang,&nbsp;Yue Zhang,&nbsp;Chun He,&nbsp;Kai Tao,&nbsp;Size Li,&nbsp;Xiaoguang San","doi":"10.1002/cnma.202400507","DOIUrl":null,"url":null,"abstract":"<p>Trimethylamine (TMA), a volatile gas possessing a strong, pungent odor, is widely recognized as an indicator for evaluating fish freshness. Despite the importance of TMA detection, the development of sensors that simultaneously possess high sensitivity, fast response kinetics, selectivity, and low-temperature operation remains a challenge. To address this issue, this work presents a novel gas-sensing material composed of porous, rod-like In<sub>2</sub>S<sub>3</sub>/ In<sub>2</sub>O<sub>3</sub> structures, synthesized via an in-situ sulfurization process. By precisely modulating the sulfurization state of In<sub>2</sub>O<sub>3</sub> through the adjustment of thioacetamide concentrations, the material's structural and compositional properties were optimized for enhanced sensing performance. Experimental results demonstrate that sulfur incorporation significantly improves sensor capabilities, owing to the synergistic effects of the In<sub>2</sub>S<sub>3</sub>/ In<sub>2</sub>O<sub>3</sub> heterojunction, the enhanced adsorption capacity for oxygen molecules, and the distinctive one-dimensional and porous architecture. Notably, the sensor with an S/In molar ratio of 1/3 exhibited exceptional TMA detection at 150 °C, with the highest response values (2.17 for 0.1 ppm and 8.17 for 10 ppm), rapid response/recovery times, excellent selectivity, and a low detection limit of 0.05 ppm. Moreover, the sensor demonstrated outstanding reproducibility and long-term stability, highlighting its potential for practical applications in seafood freshness monitoring.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"11 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemNanoMat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnma.202400507","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Trimethylamine (TMA), a volatile gas possessing a strong, pungent odor, is widely recognized as an indicator for evaluating fish freshness. Despite the importance of TMA detection, the development of sensors that simultaneously possess high sensitivity, fast response kinetics, selectivity, and low-temperature operation remains a challenge. To address this issue, this work presents a novel gas-sensing material composed of porous, rod-like In2S3/ In2O3 structures, synthesized via an in-situ sulfurization process. By precisely modulating the sulfurization state of In2O3 through the adjustment of thioacetamide concentrations, the material's structural and compositional properties were optimized for enhanced sensing performance. Experimental results demonstrate that sulfur incorporation significantly improves sensor capabilities, owing to the synergistic effects of the In2S3/ In2O3 heterojunction, the enhanced adsorption capacity for oxygen molecules, and the distinctive one-dimensional and porous architecture. Notably, the sensor with an S/In molar ratio of 1/3 exhibited exceptional TMA detection at 150 °C, with the highest response values (2.17 for 0.1 ppm and 8.17 for 10 ppm), rapid response/recovery times, excellent selectivity, and a low detection limit of 0.05 ppm. Moreover, the sensor demonstrated outstanding reproducibility and long-term stability, highlighting its potential for practical applications in seafood freshness monitoring.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemNanoMat
ChemNanoMat Energy-Energy Engineering and Power Technology
CiteScore
6.10
自引率
2.60%
发文量
236
期刊介绍: ChemNanoMat is a new journal published in close cooperation with the teams of Angewandte Chemie and Advanced Materials, and is the new sister journal to Chemistry—An Asian Journal.
期刊最新文献
Front Cover: (ChemNanoMat 1/2025) Hydrothermally Synthesized Bi-Cr-Te Nanocomposites With Enhanced Nonlinear Two-Photon Absorption Front Cover: Trichosanthes Cucumerina Derived Activated Carbon: The Potential Electrode material for High Energy Symmetric Supercapacitor (ChemNanoMat 12/2024) Improved Piezocatalytic Performance of Cs/KNN Decorated with CuS Nanoparticles for Dye Degradation Hierarchical Porous Rod-Like In2S3/In2O3 Structures for Trimethylamine Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1