YuLong Fan, YingJie Chen, Ruihang Zhang, JianMei Ren, Guan Wang
{"title":"Improved Piezocatalytic Performance of Cs/KNN Decorated with CuS Nanoparticles for Dye Degradation","authors":"YuLong Fan, YingJie Chen, Ruihang Zhang, JianMei Ren, Guan Wang","doi":"10.1002/cnma.202400543","DOIUrl":null,"url":null,"abstract":"<p>Niobate materials have garnered significant interest in recent years due to their potential applications across various fields. As a special property, piezoelectric catalysts based on niobate remain underexplored, primarily due to their chemical inertness and low piezoelectric activity. In this study, a novel 30 %CuS/0.01 %Cs/KNN composite has been successfully synthesized using a facile hydrothermal method by depositing CuS nanoparticles on the external surface of 0.01 %Cs/KNN cube. By controlling the loading amount of CuS, the catalytic degradation activity of title composite for methyl green MG reached the highest point of 99.5 % under low-power ultrasound (50 W), which is much higher than that of 0.01 %Cs/KNN (7.5 times) and CuS (5.5 times). In addition, piezoresponse force microscopy (PFM) and electrochemical tests demonstrated that the composites have good piezocatalytic properties. This work provides a meaningful strategy for promoting piezoelectric catalytic degradation using material compounding.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"11 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemNanoMat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnma.202400543","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Niobate materials have garnered significant interest in recent years due to their potential applications across various fields. As a special property, piezoelectric catalysts based on niobate remain underexplored, primarily due to their chemical inertness and low piezoelectric activity. In this study, a novel 30 %CuS/0.01 %Cs/KNN composite has been successfully synthesized using a facile hydrothermal method by depositing CuS nanoparticles on the external surface of 0.01 %Cs/KNN cube. By controlling the loading amount of CuS, the catalytic degradation activity of title composite for methyl green MG reached the highest point of 99.5 % under low-power ultrasound (50 W), which is much higher than that of 0.01 %Cs/KNN (7.5 times) and CuS (5.5 times). In addition, piezoresponse force microscopy (PFM) and electrochemical tests demonstrated that the composites have good piezocatalytic properties. This work provides a meaningful strategy for promoting piezoelectric catalytic degradation using material compounding.
ChemNanoMatEnergy-Energy Engineering and Power Technology
CiteScore
6.10
自引率
2.60%
发文量
236
期刊介绍:
ChemNanoMat is a new journal published in close cooperation with the teams of Angewandte Chemie and Advanced Materials, and is the new sister journal to Chemistry—An Asian Journal.