Substructural Damage Identification by Reduced-Order Substructural Boundaries and Improved Particle Filter With Unknown Input for Non-Gaussian Measurement Noises

IF 4.6 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Structural Control & Health Monitoring Pub Date : 2025-02-03 DOI:10.1155/stc/8548188
Ying Lei, Chang Yin, Junlong Lai, Shiyu Wang
{"title":"Substructural Damage Identification by Reduced-Order Substructural Boundaries and Improved Particle Filter With Unknown Input for Non-Gaussian Measurement Noises","authors":"Ying Lei,&nbsp;Chang Yin,&nbsp;Junlong Lai,&nbsp;Shiyu Wang","doi":"10.1155/stc/8548188","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Substructural identification has shown privileges compared with direct identification of structures. However, unknown substructural interface forces between adjacent substructures are the key but difficult issues in substructural identification. Current substructural identification methods with full-order substructural models still encounter ill-posed identification problems when there are many unknown substructural interaction forces. Thus, it is necessary to study the identification of substructures with reduced-order substructural boundaries. In addition, current substructural identification based on Kalman filtering still assumes that measurement noises are random Gaussian processes. In this paper, a method is proposed for the identification of substructural damage by reduced-order substructural boundaries and an improved particle filter with unknown input for non-Gaussian measurement noises. First, the boundary degrees of freedom of substructural boundaries together with the number of unknown boundary interaction forces are reduced by the characteristic constraint mode approach. Then, based on the reduced-order model of substructure in modal coordinate, an improved particle filter with unknown inputs is proposed, in which the importance density function and particle generation in particle filtering are established by the unscented Kalman filter with unknown inputs. Finally, substructural damage can be identified without the full observations of acceleration responses at the substructure boundaries. The effectiveness of the proposed method is verified through a numerical substructural damage of a planar frame model.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2025 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/stc/8548188","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/stc/8548188","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Substructural identification has shown privileges compared with direct identification of structures. However, unknown substructural interface forces between adjacent substructures are the key but difficult issues in substructural identification. Current substructural identification methods with full-order substructural models still encounter ill-posed identification problems when there are many unknown substructural interaction forces. Thus, it is necessary to study the identification of substructures with reduced-order substructural boundaries. In addition, current substructural identification based on Kalman filtering still assumes that measurement noises are random Gaussian processes. In this paper, a method is proposed for the identification of substructural damage by reduced-order substructural boundaries and an improved particle filter with unknown input for non-Gaussian measurement noises. First, the boundary degrees of freedom of substructural boundaries together with the number of unknown boundary interaction forces are reduced by the characteristic constraint mode approach. Then, based on the reduced-order model of substructure in modal coordinate, an improved particle filter with unknown inputs is proposed, in which the importance density function and particle generation in particle filtering are established by the unscented Kalman filter with unknown inputs. Finally, substructural damage can be identified without the full observations of acceleration responses at the substructure boundaries. The effectiveness of the proposed method is verified through a numerical substructural damage of a planar frame model.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Structural Control & Health Monitoring
Structural Control & Health Monitoring 工程技术-工程:土木
CiteScore
9.50
自引率
13.00%
发文量
234
审稿时长
8 months
期刊介绍: The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications. Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics. Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.
期刊最新文献
Application of Acoustic Emission and Baseline-Based Approach for Early Fatigue-Damage Detection Antiwhip Measures for High-Energy Piping in Nuclear Power Plants Using Lead Extrusion Impact Damping Devices: Tests and Simulations Experimental Study on the Damping Ratio Evaluation of a Cable-Stayed Bridge Based on Damping Dissipation Function A Novel Approach for Anomaly Detection in Vibration-Based Structural Health Monitoring Using Autoencoders in Deep Learning Development and Validation of New Methodology for Automated Operational Modal Analysis Using Modal Domain Range
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1