Mostafa Mollaali, Keita Yoshioka, Renchao Lu, Vanessa Montoya, Victor Vilarrasa, Olaf Kolditz
{"title":"Variational Phase-Field Fracture Approach in Reactive Porous Media","authors":"Mostafa Mollaali, Keita Yoshioka, Renchao Lu, Vanessa Montoya, Victor Vilarrasa, Olaf Kolditz","doi":"10.1002/nme.7621","DOIUrl":null,"url":null,"abstract":"<p>We present a comprehensive model to simulate fracture nucleation and propagation in porous media, incorporating chemical reactions. This model integrates three main processes: fluid flow in porous media, reactive transport, and the mechanical deformation of fractured porous media using a variational phase-field approach. To account for chemical reactions, we use the geochemical package PHREEQC, coupled with a finite-element transport solver (OpenGeoSys), to model reactions in both thermodynamic equilibrium and kinetically, considering changes in porosity. To represent chemical damage, we introduce a variable that ranges from intact material to fully damaged material. This variable accounts for changes in porosity as a result of chemical reactions, separate from the mechanical damage represented by the phase-field variable. We test our model through various examples to showcase its ability to capture fracture nucleation and propagation driven by chemical reactions. Our model is implemented within the open-source finite element framework OpenGeoSys.</p>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":"126 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/nme.7621","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nme.7621","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We present a comprehensive model to simulate fracture nucleation and propagation in porous media, incorporating chemical reactions. This model integrates three main processes: fluid flow in porous media, reactive transport, and the mechanical deformation of fractured porous media using a variational phase-field approach. To account for chemical reactions, we use the geochemical package PHREEQC, coupled with a finite-element transport solver (OpenGeoSys), to model reactions in both thermodynamic equilibrium and kinetically, considering changes in porosity. To represent chemical damage, we introduce a variable that ranges from intact material to fully damaged material. This variable accounts for changes in porosity as a result of chemical reactions, separate from the mechanical damage represented by the phase-field variable. We test our model through various examples to showcase its ability to capture fracture nucleation and propagation driven by chemical reactions. Our model is implemented within the open-source finite element framework OpenGeoSys.
期刊介绍:
The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems.
The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.