Surrogate Computational Homogenization of Viscoelastic Composites

IF 2.7 3区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY International Journal for Numerical Methods in Engineering Pub Date : 2025-03-18 DOI:10.1002/nme.70008
Yosuke Yamanaka, Norio Hirayama, Kenjiro Terada
{"title":"Surrogate Computational Homogenization of Viscoelastic Composites","authors":"Yosuke Yamanaka,&nbsp;Norio Hirayama,&nbsp;Kenjiro Terada","doi":"10.1002/nme.70008","DOIUrl":null,"url":null,"abstract":"<p>We establish a surrogate model for computational homogenization of composite materials consisting of multiple viscoelastic constituents. A surrogate macroscopic material is identified by performing interpolation using radial basis functions (RBFs) and cubic spline functions on a constitutive database generated by a series of microscopic analyses or, equivalently, numerical material tests (NMTs) on a unit cell to represent anisotropic stress relaxation behavior as well as its dependence on strain rate and temperature. After briefly reviewing the two-scale boundary value problem derived based on homogenization theory, an RBF interpolation with a normalized kernel is formulated for a discrete dataset, and an optimization algorithm is applied to determine the three hyperparameters so as to achieve proper interpolation. Then, we formulate the surrogate homogenization model (SHM) using the interpolants to substitute for the macroscopic viscoelastic response. To show the specific procedure of the proposed surrogate modeling and demonstrate the performance of the created SHM, a representative numerical example is presented in the offline and online stages. In the offline stage, NMTs are carried out in the space of training data, including the temperature, to generate a dataset as long as the macroscopic stresses can be learned exhaustively, and then optimization is performed to determine the set of hyperparameters. Then, to validate the created SHM, its responses to unseen loading and temperature histories are compared with the corresponding NMT results. In the online stage, the created SHM is used to carry out a macroscopic analysis of a simple structure under specific loading and temperature conditions, and subsequently, the obtained macroscopic stresses are compared with those obtained from the localization analysis results. The results are also compared with those obtained from the single-scale direct numerical analyses.</p>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":"126 6","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/nme.70008","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nme.70008","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We establish a surrogate model for computational homogenization of composite materials consisting of multiple viscoelastic constituents. A surrogate macroscopic material is identified by performing interpolation using radial basis functions (RBFs) and cubic spline functions on a constitutive database generated by a series of microscopic analyses or, equivalently, numerical material tests (NMTs) on a unit cell to represent anisotropic stress relaxation behavior as well as its dependence on strain rate and temperature. After briefly reviewing the two-scale boundary value problem derived based on homogenization theory, an RBF interpolation with a normalized kernel is formulated for a discrete dataset, and an optimization algorithm is applied to determine the three hyperparameters so as to achieve proper interpolation. Then, we formulate the surrogate homogenization model (SHM) using the interpolants to substitute for the macroscopic viscoelastic response. To show the specific procedure of the proposed surrogate modeling and demonstrate the performance of the created SHM, a representative numerical example is presented in the offline and online stages. In the offline stage, NMTs are carried out in the space of training data, including the temperature, to generate a dataset as long as the macroscopic stresses can be learned exhaustively, and then optimization is performed to determine the set of hyperparameters. Then, to validate the created SHM, its responses to unseen loading and temperature histories are compared with the corresponding NMT results. In the online stage, the created SHM is used to carry out a macroscopic analysis of a simple structure under specific loading and temperature conditions, and subsequently, the obtained macroscopic stresses are compared with those obtained from the localization analysis results. The results are also compared with those obtained from the single-scale direct numerical analyses.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.70
自引率
6.90%
发文量
276
审稿时长
5.3 months
期刊介绍: The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems. The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.
期刊最新文献
Issue Information Study on Reference Displacement Method Based on Radial Basis Functions With Boundary Orthogonality Correction and Spatial Multiple Point Selection Surrogate Computational Homogenization of Viscoelastic Composites Concurrent Optimization of Unit-Cell Topology and Tessellating Orientation for Finite Periodic Structures Formulation of Correction Term in QUBO Form for Phase-Field Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1