DDPGAT: Integrating MADDPG and GAT for optimized urban traffic light control

IF 2.3 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IET Intelligent Transport Systems Pub Date : 2025-02-04 DOI:10.1049/itr2.70000
Meisam Azad-Manjiri, Mohsen Afsharchi, Monireh Abdoos
{"title":"DDPGAT: Integrating MADDPG and GAT for optimized urban traffic light control","authors":"Meisam Azad-Manjiri,&nbsp;Mohsen Afsharchi,&nbsp;Monireh Abdoos","doi":"10.1049/itr2.70000","DOIUrl":null,"url":null,"abstract":"<p>Urban traffic control is a complex and dynamic multi-agent challenge, characterized by the need for efficient coordination and real-time responsiveness in fluctuating traffic conditions. Traditional methods often fall short in adapting to these dynamic environments. This article introduces “DDPGAT”, a novel framework that merges Multi-Agent Deep Deterministic Policy Gradients (MADDPG) with Graph Attention Networks (GATs) for optimized urban traffic control, further enhanced by a unique moral reward component. DDPGAT empowers traffic signal controllers as independent agents using GATs for dynamic road importance assessment. Shared attention scores during training enhance each agent's understanding of local and wider traffic patterns, essential for developing adaptive control policies. A key innovation in DDPGAT is the moral reward function, encouraging decisions that consider neighboring intersections' traffic, thus promoting ethical traffic management. The experiments demonstrate that DDPGAT significantly boosts traffic throughput and reduces congestion, confirming its effectiveness in diverse traffic conditions. The integration of MADDPG, GATs, and a moral reward strategy in DDPGAT presents a sophisticated, robust approach for managing the complexities of urban traffic control, marking a notable progression in intelligent traffic system technologies.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"19 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.70000","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.70000","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Urban traffic control is a complex and dynamic multi-agent challenge, characterized by the need for efficient coordination and real-time responsiveness in fluctuating traffic conditions. Traditional methods often fall short in adapting to these dynamic environments. This article introduces “DDPGAT”, a novel framework that merges Multi-Agent Deep Deterministic Policy Gradients (MADDPG) with Graph Attention Networks (GATs) for optimized urban traffic control, further enhanced by a unique moral reward component. DDPGAT empowers traffic signal controllers as independent agents using GATs for dynamic road importance assessment. Shared attention scores during training enhance each agent's understanding of local and wider traffic patterns, essential for developing adaptive control policies. A key innovation in DDPGAT is the moral reward function, encouraging decisions that consider neighboring intersections' traffic, thus promoting ethical traffic management. The experiments demonstrate that DDPGAT significantly boosts traffic throughput and reduces congestion, confirming its effectiveness in diverse traffic conditions. The integration of MADDPG, GATs, and a moral reward strategy in DDPGAT presents a sophisticated, robust approach for managing the complexities of urban traffic control, marking a notable progression in intelligent traffic system technologies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Intelligent Transport Systems
IET Intelligent Transport Systems 工程技术-运输科技
CiteScore
6.50
自引率
7.40%
发文量
159
审稿时长
3 months
期刊介绍: IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following: Sustainable traffic solutions Deployments with enabling technologies Pervasive monitoring Applications; demonstrations and evaluation Economic and behavioural analyses of ITS services and scenario Data Integration and analytics Information collection and processing; image processing applications in ITS ITS aspects of electric vehicles Autonomous vehicles; connected vehicle systems; In-vehicle ITS, safety and vulnerable road user aspects Mobility as a service systems Traffic management and control Public transport systems technologies Fleet and public transport logistics Emergency and incident management Demand management and electronic payment systems Traffic related air pollution management Policy and institutional issues Interoperability, standards and architectures Funding scenarios Enforcement Human machine interaction Education, training and outreach Current Special Issue Call for papers: Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf
期刊最新文献
DDPGAT: Integrating MADDPG and GAT for optimized urban traffic light control Prediction of airport surface potential conflict based on GNN-LSTM Boarding stop inference with uncertain relationship between bus vehicles and mobile smart card readers Design prognostics for 4400 TEU container vessel by multi-variate Gaidai reliability approach A reinforcement learning-based reverse-parking system for autonomous vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1