{"title":"A Novel Two-Stage Reliability Analysis Method Combining Improved Cross-Entropy Adaptive Sampling and Relevant Vector Machine","authors":"Xin Fan, Xufeng Yang, Yongshou Liu","doi":"10.1002/nme.7635","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The computational burden becomes unbearable when reliability analysis involves time-consuming finite element analysis, especially for rare events. Therefore, reducing the number of performance function calls is the only way to improve computing efficiency. This paper proposes a novel reliability analysis method that combines relevant vector machine (RVM) and improved cross-entropy adaptive sampling (iCE). In this method, RVM is employed to approximate the limit state surface and iCE is performed based on the constructed RVM. To guarantee the precision of RVM, the first level samples and the last level samples of iCE are used as candidate samples and the last level samples are regenerated along with the RVM updates. To prevent unnecessary updates of RVM, the proposed method considers the positions of the samples in the current design of experiment. In addition, based on the statistical properties of RVM and iCE, an error-based stopping criterion is proposed. The accuracy and efficiency of the proposed method were validated through four benchmark examples. Finally, the proposed method is applied to engineering problems which are working in extreme environment.</p>\n </div>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":"126 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nme.7635","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The computational burden becomes unbearable when reliability analysis involves time-consuming finite element analysis, especially for rare events. Therefore, reducing the number of performance function calls is the only way to improve computing efficiency. This paper proposes a novel reliability analysis method that combines relevant vector machine (RVM) and improved cross-entropy adaptive sampling (iCE). In this method, RVM is employed to approximate the limit state surface and iCE is performed based on the constructed RVM. To guarantee the precision of RVM, the first level samples and the last level samples of iCE are used as candidate samples and the last level samples are regenerated along with the RVM updates. To prevent unnecessary updates of RVM, the proposed method considers the positions of the samples in the current design of experiment. In addition, based on the statistical properties of RVM and iCE, an error-based stopping criterion is proposed. The accuracy and efficiency of the proposed method were validated through four benchmark examples. Finally, the proposed method is applied to engineering problems which are working in extreme environment.
期刊介绍:
The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems.
The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.