{"title":"Silica Gel Supported Solid Amine Sorbents for CO2 Capture","authors":"Baljeet Singh, Zahra Eshaghi Gorji, Rustam Singh, Vikas Sharma, Timo Repo","doi":"10.1002/eem2.12832","DOIUrl":null,"url":null,"abstract":"<p>Point source CO<sub>2</sub> capture (PSCC) is crucial for decarbonizing various industrial sectors, while direct air capture (DAC) holds promise for removing CO<sub>2</sub> directly from the air. Sorbents play a critical role in both technologies, with their performances, efficiency, cost, etc., largely depending on which type is used (physical or chemical). Solid amine sorbents (SAS) employed in the chemical adsorption of CO<sub>2</sub> are suitable for both PSCC and DAC. SAS offer significant advantages over liquid amines such as monoethanolamine (MEA), due to their ability to perform cyclic adsorption–desorption with much lower energy requirement. The environmental concern associated with MEA can be mitigated by SAS. Support materials have a significantly important role in stabilizing amine and enhancing stability and kinetics; varieties of support materials have been screened at a laboratory scale. One promising support material is a silica gel (SG), which is commercially available and attractive for designing cost-effective sorbents for large-scale CO<sub>2</sub> capture. Various impregnation methods such as physical adsorption and covalent functionalization have been employed to functionalize silica surfaces with amines. This review provided a comprehensive critical analysis of SG-based SAS for CO<sub>2</sub> capture. We discussed and evaluated them in terms of their adsorption capacity, adsorption, and desorption conditions, and the kinetics involved in these processes. Finally, we proposed a few recommendations for further development of low-cost, lower carbon footprint SAS for large-scale deployment of CO<sub>2</sub> capture technology.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"8 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12832","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eem2.12832","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Point source CO2 capture (PSCC) is crucial for decarbonizing various industrial sectors, while direct air capture (DAC) holds promise for removing CO2 directly from the air. Sorbents play a critical role in both technologies, with their performances, efficiency, cost, etc., largely depending on which type is used (physical or chemical). Solid amine sorbents (SAS) employed in the chemical adsorption of CO2 are suitable for both PSCC and DAC. SAS offer significant advantages over liquid amines such as monoethanolamine (MEA), due to their ability to perform cyclic adsorption–desorption with much lower energy requirement. The environmental concern associated with MEA can be mitigated by SAS. Support materials have a significantly important role in stabilizing amine and enhancing stability and kinetics; varieties of support materials have been screened at a laboratory scale. One promising support material is a silica gel (SG), which is commercially available and attractive for designing cost-effective sorbents for large-scale CO2 capture. Various impregnation methods such as physical adsorption and covalent functionalization have been employed to functionalize silica surfaces with amines. This review provided a comprehensive critical analysis of SG-based SAS for CO2 capture. We discussed and evaluated them in terms of their adsorption capacity, adsorption, and desorption conditions, and the kinetics involved in these processes. Finally, we proposed a few recommendations for further development of low-cost, lower carbon footprint SAS for large-scale deployment of CO2 capture technology.
期刊介绍:
Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.