Curcumin Suppresses ROS Production and Increases Mitochondrial Activity in Cumulus Cells and Oocytes of COCs Derived From Non-Vascularized Follicles in Pigs
{"title":"Curcumin Suppresses ROS Production and Increases Mitochondrial Activity in Cumulus Cells and Oocytes of COCs Derived From Non-Vascularized Follicles in Pigs","authors":"Tomoya Nakanishi, Shingo Tonai, Haruto Ichikawa, Shota Mori, Shinji Ishihara, Yongjin Chang, Yasuhisa Yamashita","doi":"10.1111/asj.70032","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In vitro maturation (IVM) produces offspring from domestic animals; however, the blastocyst rate after IVM was low. We previously reported that the developmental competence of oocytes derived from follicles with blood vessels absent on the surface (non-vascularized follicles: NVF) is quite low compared to those derived from follicles with blood vessels present on the surface (vascularized follicles: VF). Thus, it is important to develop technique to improve the quality of NVF-derived oocyte by IVM. Since it has been reported that reactive oxygen species (ROS) reduces oocyte quality, in this study, we investigated whether curcumin that is known as antioxidant could improve oocyte quality derived from NVF. As results, cultivation of NVF Cumulus-oocyte complexes (COCs) with curcumin significantly improved cumulus expansion and oocyte meiotic maturation of NVF COCs compared to those of NVF COCs without curcumin. Cultivation with curcumin of NVF COCs significantly improved the proliferative activity of cumulus cells. Furthermore, the cultivation significantly reduced ROS activity and increased mitochondrial activity. Hence, it was revealed that the addition of curcumin to the maturation medium increased mitochondrial activity and reduced ROS levels in NVF-derived cumulus cells and oocytes, thereby improving the maturation of oocytes within COCs.</p>\n </div>","PeriodicalId":7890,"journal":{"name":"Animal Science Journal","volume":"96 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Science Journal","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/asj.70032","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In vitro maturation (IVM) produces offspring from domestic animals; however, the blastocyst rate after IVM was low. We previously reported that the developmental competence of oocytes derived from follicles with blood vessels absent on the surface (non-vascularized follicles: NVF) is quite low compared to those derived from follicles with blood vessels present on the surface (vascularized follicles: VF). Thus, it is important to develop technique to improve the quality of NVF-derived oocyte by IVM. Since it has been reported that reactive oxygen species (ROS) reduces oocyte quality, in this study, we investigated whether curcumin that is known as antioxidant could improve oocyte quality derived from NVF. As results, cultivation of NVF Cumulus-oocyte complexes (COCs) with curcumin significantly improved cumulus expansion and oocyte meiotic maturation of NVF COCs compared to those of NVF COCs without curcumin. Cultivation with curcumin of NVF COCs significantly improved the proliferative activity of cumulus cells. Furthermore, the cultivation significantly reduced ROS activity and increased mitochondrial activity. Hence, it was revealed that the addition of curcumin to the maturation medium increased mitochondrial activity and reduced ROS levels in NVF-derived cumulus cells and oocytes, thereby improving the maturation of oocytes within COCs.
期刊介绍:
Animal Science Journal (a continuation of Animal Science and Technology) is the official journal of the Japanese Society of Animal Science (JSAS) and publishes Original Research Articles (full papers and rapid communications) in English in all fields of animal and poultry science: genetics and breeding, genetic engineering, reproduction, embryo manipulation, nutrition, feeds and feeding, physiology, anatomy, environment and behavior, animal products (milk, meat, eggs and their by-products) and their processing, and livestock economics. Animal Science Journal will invite Review Articles in consultations with Editors. Submission to the Journal is open to those who are interested in animal science.