Wetland Distribution in the Qinghai-Tibetan Plateau and Its Responses to Climate Change and Glacial Retreat

IF 3.2 3区 地球科学 Q1 Environmental Science Hydrological Processes Pub Date : 2025-01-05 DOI:10.1002/hyp.70047
Tianzhu Peng, Weizhe Chen, Hao Long, Zhenru Ma, Rui Zhang
{"title":"Wetland Distribution in the Qinghai-Tibetan Plateau and Its Responses to Climate Change and Glacial Retreat","authors":"Tianzhu Peng,&nbsp;Weizhe Chen,&nbsp;Hao Long,&nbsp;Zhenru Ma,&nbsp;Rui Zhang","doi":"10.1002/hyp.70047","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The Qinghai-Tibetan Plateau (QTP) experienced noticeable warming and glacial retreat during the past decades. However, it is unclear how these changes affect QTP wetland distribution in the past and future. To this end, this study estimated the potential wetland distribution in the QTP under present and future climate scenarios using five machine learning methods. We further decoupled the sensitivity of wetland area to temperature, precipitation, and glacier changes based on the control experiment, and quantified the environmental niche of QTP wetland distribution. The RusBoost algorithm model has the best performance and shows that the current potential wetland area is about 1.6 × 10<sup>5</sup> km<sup>2</sup>, accounting for 6.22% of the land surface. By 2100, QTP wetlands are projected to increase by 9.6% and 77.3% relative to the current potential wetland area under the SSP1-2.6 and SSP5-8.5 scenarios, respectively. Climate warming and wetting are positively correlated with the future wetland areas. Each 1°C increase in the warmest season temperature can lead to a 9.0% increase in QTP wetland areas. Glacial retreat to some extent leads to wetland increase, for example, in the southeastern QTP, likely due to glacial meltwater recharge. However, wetlands will decrease due to longer glacial distances in the northeast QTP, because wetlands tend to grow within a suitable distance of 30 km to glaciers. As more current wetlands spread within the recharge range of glacier meltwater, QTP wetlands expect to increase in the near future. This research provides a valuable reference for predicting wetland changes in alpine regions in the context of global warming.</p>\n </div>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"39 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Processes","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hyp.70047","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

The Qinghai-Tibetan Plateau (QTP) experienced noticeable warming and glacial retreat during the past decades. However, it is unclear how these changes affect QTP wetland distribution in the past and future. To this end, this study estimated the potential wetland distribution in the QTP under present and future climate scenarios using five machine learning methods. We further decoupled the sensitivity of wetland area to temperature, precipitation, and glacier changes based on the control experiment, and quantified the environmental niche of QTP wetland distribution. The RusBoost algorithm model has the best performance and shows that the current potential wetland area is about 1.6 × 105 km2, accounting for 6.22% of the land surface. By 2100, QTP wetlands are projected to increase by 9.6% and 77.3% relative to the current potential wetland area under the SSP1-2.6 and SSP5-8.5 scenarios, respectively. Climate warming and wetting are positively correlated with the future wetland areas. Each 1°C increase in the warmest season temperature can lead to a 9.0% increase in QTP wetland areas. Glacial retreat to some extent leads to wetland increase, for example, in the southeastern QTP, likely due to glacial meltwater recharge. However, wetlands will decrease due to longer glacial distances in the northeast QTP, because wetlands tend to grow within a suitable distance of 30 km to glaciers. As more current wetlands spread within the recharge range of glacier meltwater, QTP wetlands expect to increase in the near future. This research provides a valuable reference for predicting wetland changes in alpine regions in the context of global warming.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Hydrological Processes
Hydrological Processes 环境科学-水资源
CiteScore
6.00
自引率
12.50%
发文量
313
审稿时长
2-4 weeks
期刊介绍: Hydrological Processes is an international journal that publishes original scientific papers advancing understanding of the mechanisms underlying the movement and storage of water in the environment, and the interaction of water with geological, biogeochemical, atmospheric and ecological systems. Not all papers related to water resources are appropriate for submission to this journal; rather we seek papers that clearly articulate the role(s) of hydrological processes.
期刊最新文献
Wood-Biochar Influence on Rill Erosion Processes and Hydrological Connectivity in Amended Soils New Predictors for Hydrologic Signatures: Wetlands and Geologic Age Across Continental Scales Developing a Two-Dimensional Semi-Analytical Solution on a Plan View for a Consecutive Divergent Tracer Test Considering Regional Groundwater Flow Enhanced Spatial Dry–Wet Contrast in the Future of the Qinghai–Tibet Plateau Urban Snowmelt Runoff Responses to the Temperature-Hydraulic Conductivity Relation in a Cold Climate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1