Method Development, Interlaboratory Comparison, and Occurrence Study for 19 Taste and Odor Compounds by Solid-Phase Microextraction Gas Chromatography–Mass Spectrometry
Hunter Adams, Sam Reeder, Katie Kohoutek, Christiane Hoppe-Jones, Susheera Pochiraju, Mark Southard, Keisuke Ikehata, Carlos A. Espindola Jr, Andrea M. Dietrich, Gary A. Burlingame, Daniel K. Nix, Ruth Marfil-Vega, Terry Jeffers, I. H. (Mel) Suffet, Michelle Ashman, Kandé Duncan, Eduardo Morales, William C. Lipps
{"title":"Method Development, Interlaboratory Comparison, and Occurrence Study for 19 Taste and Odor Compounds by Solid-Phase Microextraction Gas Chromatography–Mass Spectrometry","authors":"Hunter Adams, Sam Reeder, Katie Kohoutek, Christiane Hoppe-Jones, Susheera Pochiraju, Mark Southard, Keisuke Ikehata, Carlos A. Espindola Jr, Andrea M. Dietrich, Gary A. Burlingame, Daniel K. Nix, Ruth Marfil-Vega, Terry Jeffers, I. H. (Mel) Suffet, Michelle Ashman, Kandé Duncan, Eduardo Morales, William C. Lipps","doi":"10.1002/aws2.70013","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Public water systems (PWSs) need robust taste and odor (T&O) methods for a diverse range of compounds to proactively monitor their systems from source to tap and make informed treatment decisions. In this study, Standard Method 6040D T&O compounds by solid-phase microextraction gas chromatography–mass spectrometry was revised to include 19 T&O compounds with various odor descriptors including earthy, musty, grassy, woody, fishy, septic, fruity, and sweet. An interlaboratory comparison was performed to determine method accuracy, precision, reproducibility, and ruggedness. Three laboratories achieved passing quality control (QC) acceptance criteria for all 19 compounds, and one laboratory achieved passing QC acceptance criteria for 14 compounds. In this article, occurrence data and method applications are also discussed, which will allow PWSs to monitor diverse classes of T&O compounds and make informed, proactive treatment decisions to maintain high aesthetic quality for their customers.</p>\n </div>","PeriodicalId":101301,"journal":{"name":"AWWA water science","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AWWA water science","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aws2.70013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Public water systems (PWSs) need robust taste and odor (T&O) methods for a diverse range of compounds to proactively monitor their systems from source to tap and make informed treatment decisions. In this study, Standard Method 6040D T&O compounds by solid-phase microextraction gas chromatography–mass spectrometry was revised to include 19 T&O compounds with various odor descriptors including earthy, musty, grassy, woody, fishy, septic, fruity, and sweet. An interlaboratory comparison was performed to determine method accuracy, precision, reproducibility, and ruggedness. Three laboratories achieved passing quality control (QC) acceptance criteria for all 19 compounds, and one laboratory achieved passing QC acceptance criteria for 14 compounds. In this article, occurrence data and method applications are also discussed, which will allow PWSs to monitor diverse classes of T&O compounds and make informed, proactive treatment decisions to maintain high aesthetic quality for their customers.