Climate change intensifies extreme weather events, potentially posing significant challenges to the quality and quantity of surface water available for drinking water treatment. Quantifying and substantiating a treatment system's capacity and vulnerability in handling a range of raw water conditions is crucial for preparing for future climate scenarios. Concepts like resilience and reliability and related tools have been applied to drinking water treatment plants (DWTPs), but often fail to capture the operational boundaries of treatment processes. Robustness offers a complementary approach, focusing on the range of conditions a system can effectively manage, thereby laying the foundation for improving the system and thus bridging a critical gap in adaptation strategies. This review examines the interconnections between robustness, resilience, reliability, risk, and vulnerability, providing tailored definitions for DWTPs. It also introduces visual diagrams to further illustrate their link and collective role in climate adaptation planning.