{"title":"Geometric Machine Learning","authors":"Melanie Weber","doi":"10.1002/aaai.12210","DOIUrl":null,"url":null,"abstract":"<p>A cornerstone of machine learning is the identification and exploitation of structure in high-dimensional data. While classical approaches assume that data lies in a high-dimensional Euclidean space, <i>geometric machine learning</i> methods are designed for non-Euclidean data, including graphs, strings, and matrices, or data characterized by symmetries inherent in the underlying system. In this article, we review geometric approaches for uncovering and leveraging structure in data and how an understanding of data geometry can lead to the development of more effective machine learning algorithms with provable guarantees.</p>","PeriodicalId":7854,"journal":{"name":"Ai Magazine","volume":"46 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12210","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Magazine","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aaai.12210","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
A cornerstone of machine learning is the identification and exploitation of structure in high-dimensional data. While classical approaches assume that data lies in a high-dimensional Euclidean space, geometric machine learning methods are designed for non-Euclidean data, including graphs, strings, and matrices, or data characterized by symmetries inherent in the underlying system. In this article, we review geometric approaches for uncovering and leveraging structure in data and how an understanding of data geometry can lead to the development of more effective machine learning algorithms with provable guarantees.
期刊介绍:
AI Magazine publishes original articles that are reasonably self-contained and aimed at a broad spectrum of the AI community. Technical content should be kept to a minimum. In general, the magazine does not publish articles that have been published elsewhere in whole or in part. The magazine welcomes the contribution of articles on the theory and practice of AI as well as general survey articles, tutorial articles on timely topics, conference or symposia or workshop reports, and timely columns on topics of interest to AI scientists.