{"title":"Study on simulating the filling and emptying process of ship lock based on Storm Water Management Model","authors":"Jiayi Zhang, Zhenghua Gu, Minxiong Cao","doi":"10.1111/1752-1688.13248","DOIUrl":null,"url":null,"abstract":"<p>Storm Water Management Model (SWMM) was widely used in hydrological simulation, river network calculation, flood control, and disaster reduction, but it was rarely used in ship lock hydraulics simulation. In this paper, SWMM is used to simulate the water filling and emptying process in ship lock. One-dimensional hydraulic mathematical models are established for the centralized filling and emptying system, simple decentralized filling and emptying system, and complex decentralized filling and emptying system, respectively, and they are applied to Mengli Ship Lock of North River in Guangdong Province, Qiaogong Ship Lock of Hongshui River, and Bajiangkou Ship Lock of Gui River in Guangxi Province of China. Compared with the results from the physical model experiments of ship lock hydraulics, it is shown that SWMM has better simulation effects on the centralized filling and emptying system with short corridor and the simple decentralized filling and emptying system, and their relative errors of filling and emptying time and maximum flow are totally less than 5%. For the complex decentralized filling and emptying system, SWMM has a good simulation effect on the water level change process, but the simulation error of the flow change process is larger relatively, and the relative errors of filling and emptying time and maximum flow are totally less than 10%. In addition, the filling and emptying process simulations are all completed within 5 s for three types of filling and emptying systems. The results show that the mathematical model of ship lock filling and emptying based on SWMM has high operation efficiency and good simulation accuracy and can not only be used as an effective tool for hydraulic calculation of ship lock but also provide mathematical model support for navigation intelligent scheduling.</p>","PeriodicalId":17234,"journal":{"name":"Journal of The American Water Resources Association","volume":"61 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The American Water Resources Association","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1752-1688.13248","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Storm Water Management Model (SWMM) was widely used in hydrological simulation, river network calculation, flood control, and disaster reduction, but it was rarely used in ship lock hydraulics simulation. In this paper, SWMM is used to simulate the water filling and emptying process in ship lock. One-dimensional hydraulic mathematical models are established for the centralized filling and emptying system, simple decentralized filling and emptying system, and complex decentralized filling and emptying system, respectively, and they are applied to Mengli Ship Lock of North River in Guangdong Province, Qiaogong Ship Lock of Hongshui River, and Bajiangkou Ship Lock of Gui River in Guangxi Province of China. Compared with the results from the physical model experiments of ship lock hydraulics, it is shown that SWMM has better simulation effects on the centralized filling and emptying system with short corridor and the simple decentralized filling and emptying system, and their relative errors of filling and emptying time and maximum flow are totally less than 5%. For the complex decentralized filling and emptying system, SWMM has a good simulation effect on the water level change process, but the simulation error of the flow change process is larger relatively, and the relative errors of filling and emptying time and maximum flow are totally less than 10%. In addition, the filling and emptying process simulations are all completed within 5 s for three types of filling and emptying systems. The results show that the mathematical model of ship lock filling and emptying based on SWMM has high operation efficiency and good simulation accuracy and can not only be used as an effective tool for hydraulic calculation of ship lock but also provide mathematical model support for navigation intelligent scheduling.
期刊介绍:
JAWRA seeks to be the preeminent scholarly publication on multidisciplinary water resources issues. JAWRA papers present ideas derived from multiple disciplines woven together to give insight into a critical water issue, or are based primarily upon a single discipline with important applications to other disciplines. Papers often cover the topics of recent AWRA conferences such as riparian ecology, geographic information systems, adaptive management, and water policy.
JAWRA authors present work within their disciplinary fields to a broader audience. Our Associate Editors and reviewers reflect this diversity to ensure a knowledgeable and fair review of a broad range of topics. We particularly encourage submissions of papers which impart a ''take home message'' our readers can use.