{"title":"Alternative Computational Approach Improving Hydrologic Design of Low-Impact Development Facilities","authors":"Yiping Guo","doi":"10.1111/1752-1688.70010","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Low-impact development (LID) facilities such as bioretention cells, infiltration trenches, permeable pavements, rainwater harvesting systems, and green roofs are widely used in North America to reduce the detrimental environmental impact of urban development. The design-storm approach is commonly used for determining the required sizes of LID facilities. An alternative computational approach was recently developed that uses analytical equations to directly quantify LID facilities' hydrologic performance statistics. These equations enable the convenient sizing of individual LID facilities to achieve desired levels of performance. The main objectives of this commentary are (1) to illustrate how this approach was developed, (2) to demonstrate how this new approach may be used in engineering practice, and (3) to reveal the shortcomings of the conventional approach and demonstrate how the new approach may be used to improve the hydrologic design of LID facilities. Also described in this commentary are the obstacles that may be encountered in the adaptation and implementation of the new approach and what may be done to remove them.</p>\n </div>","PeriodicalId":17234,"journal":{"name":"Journal of The American Water Resources Association","volume":"61 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The American Water Resources Association","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1752-1688.70010","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Low-impact development (LID) facilities such as bioretention cells, infiltration trenches, permeable pavements, rainwater harvesting systems, and green roofs are widely used in North America to reduce the detrimental environmental impact of urban development. The design-storm approach is commonly used for determining the required sizes of LID facilities. An alternative computational approach was recently developed that uses analytical equations to directly quantify LID facilities' hydrologic performance statistics. These equations enable the convenient sizing of individual LID facilities to achieve desired levels of performance. The main objectives of this commentary are (1) to illustrate how this approach was developed, (2) to demonstrate how this new approach may be used in engineering practice, and (3) to reveal the shortcomings of the conventional approach and demonstrate how the new approach may be used to improve the hydrologic design of LID facilities. Also described in this commentary are the obstacles that may be encountered in the adaptation and implementation of the new approach and what may be done to remove them.
期刊介绍:
JAWRA seeks to be the preeminent scholarly publication on multidisciplinary water resources issues. JAWRA papers present ideas derived from multiple disciplines woven together to give insight into a critical water issue, or are based primarily upon a single discipline with important applications to other disciplines. Papers often cover the topics of recent AWRA conferences such as riparian ecology, geographic information systems, adaptive management, and water policy.
JAWRA authors present work within their disciplinary fields to a broader audience. Our Associate Editors and reviewers reflect this diversity to ensure a knowledgeable and fair review of a broad range of topics. We particularly encourage submissions of papers which impart a ''take home message'' our readers can use.