Alternative Computational Approach Improving Hydrologic Design of Low-Impact Development Facilities

IF 2.6 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Journal of The American Water Resources Association Pub Date : 2025-03-10 DOI:10.1111/1752-1688.70010
Yiping Guo
{"title":"Alternative Computational Approach Improving Hydrologic Design of Low-Impact Development Facilities","authors":"Yiping Guo","doi":"10.1111/1752-1688.70010","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Low-impact development (LID) facilities such as bioretention cells, infiltration trenches, permeable pavements, rainwater harvesting systems, and green roofs are widely used in North America to reduce the detrimental environmental impact of urban development. The design-storm approach is commonly used for determining the required sizes of LID facilities. An alternative computational approach was recently developed that uses analytical equations to directly quantify LID facilities' hydrologic performance statistics. These equations enable the convenient sizing of individual LID facilities to achieve desired levels of performance. The main objectives of this commentary are (1) to illustrate how this approach was developed, (2) to demonstrate how this new approach may be used in engineering practice, and (3) to reveal the shortcomings of the conventional approach and demonstrate how the new approach may be used to improve the hydrologic design of LID facilities. Also described in this commentary are the obstacles that may be encountered in the adaptation and implementation of the new approach and what may be done to remove them.</p>\n </div>","PeriodicalId":17234,"journal":{"name":"Journal of The American Water Resources Association","volume":"61 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The American Water Resources Association","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1752-1688.70010","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Low-impact development (LID) facilities such as bioretention cells, infiltration trenches, permeable pavements, rainwater harvesting systems, and green roofs are widely used in North America to reduce the detrimental environmental impact of urban development. The design-storm approach is commonly used for determining the required sizes of LID facilities. An alternative computational approach was recently developed that uses analytical equations to directly quantify LID facilities' hydrologic performance statistics. These equations enable the convenient sizing of individual LID facilities to achieve desired levels of performance. The main objectives of this commentary are (1) to illustrate how this approach was developed, (2) to demonstrate how this new approach may be used in engineering practice, and (3) to reveal the shortcomings of the conventional approach and demonstrate how the new approach may be used to improve the hydrologic design of LID facilities. Also described in this commentary are the obstacles that may be encountered in the adaptation and implementation of the new approach and what may be done to remove them.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of The American Water Resources Association
Journal of The American Water Resources Association 环境科学-地球科学综合
CiteScore
4.10
自引率
12.50%
发文量
100
审稿时长
3 months
期刊介绍: JAWRA seeks to be the preeminent scholarly publication on multidisciplinary water resources issues. JAWRA papers present ideas derived from multiple disciplines woven together to give insight into a critical water issue, or are based primarily upon a single discipline with important applications to other disciplines. Papers often cover the topics of recent AWRA conferences such as riparian ecology, geographic information systems, adaptive management, and water policy. JAWRA authors present work within their disciplinary fields to a broader audience. Our Associate Editors and reviewers reflect this diversity to ensure a knowledgeable and fair review of a broad range of topics. We particularly encourage submissions of papers which impart a ''take home message'' our readers can use.
期刊最新文献
Alternative Computational Approach Improving Hydrologic Design of Low-Impact Development Facilities Leveraging High-Frequency Sensor Data and U.S. National Water Model Output to Forecast Turbidity in a Drinking Water Supply Basin A Stakeholder-Driven Approach for Enhancing Streamflow Monitoring Networks in Louisiana, USA The Effects of Unpaved Roads on Instream Sediment: Patterns and Challenges for Monitoring Calibrating Streamflow and Hydrological Processes in Geological Regions Using a Combined Soft and Hard Calibration Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1