Maximizing Oxygen Evolution Performance of NiFeOx Semitransparent Electrocatalysts Applicable to Photoelectrochemical Water Splitting Device

IF 2.6 4区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY ChemNanoMat Pub Date : 2024-11-15 DOI:10.1002/cnma.202400536
Koichi Yoshiyama, Tomohiro Higashi, Tian Xiao, Kenji Yoshino
{"title":"Maximizing Oxygen Evolution Performance of NiFeOx Semitransparent Electrocatalysts Applicable to Photoelectrochemical Water Splitting Device","authors":"Koichi Yoshiyama,&nbsp;Tomohiro Higashi,&nbsp;Tian Xiao,&nbsp;Kenji Yoshino","doi":"10.1002/cnma.202400536","DOIUrl":null,"url":null,"abstract":"<p>In photoelectrochemical (PEC) water splitting, semiconductor-based photoelectrodes can improve reaction rates and durability by incorporating cocatalysts that serve as active sites for the water splitting process. However, achieving both high light transmittance and efficient catalytic activity is essential for these cocatalysts. This study aimed to optimize the surface loading of semitransparent NiFeO<sub><i>x</i></sub> thin-film electrocatalysts to enhance the oxygen evolution reaction (OER) rates while maintaining high light transmittance. NiFeO<sub><i>x</i></sub> thin films were deposited on fluorine-doped SnO<sub>2</sub> (FTO) transparent conductive substrates, and the relationship between the NiFeO<sub><i>x</i></sub> loading amount (<i>Γ</i>) and the OER rate was examined using electrochemical techniques. The OER rate of NiFeO<sub><i>x</i></sub> on FTO (NiFeO<sub><i>x</i></sub>/FTO) was the highest at a <i>Γ</i> value of 0.20 μmol cm<sup>−2</sup>. To further explore the connection between this optimized <i>Γ</i> and PEC activity, the impact of <i>Γ</i> on the PEC OER performance of visible-light-absorbing <i>α</i>-Fe<sub>2</sub>O<sub>3</sub> semitransparent photoanodes was evaluated as a model system. Applying the optimized <i>Γ</i> of NiFeO<sub><i>x</i></sub> to modify the <i>α</i>-Fe<sub>2</sub>O<sub>3</sub> surface also led to enhanced PEC OER performance. These findings highlight the critical role of surface design, specifically the optimization of cocatalyst loading and electrocatalytic activity, in improving PEC water splitting efficiency, providing valuable guidelines for future semitransparent photoelectrode development.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"11 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemNanoMat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnma.202400536","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In photoelectrochemical (PEC) water splitting, semiconductor-based photoelectrodes can improve reaction rates and durability by incorporating cocatalysts that serve as active sites for the water splitting process. However, achieving both high light transmittance and efficient catalytic activity is essential for these cocatalysts. This study aimed to optimize the surface loading of semitransparent NiFeOx thin-film electrocatalysts to enhance the oxygen evolution reaction (OER) rates while maintaining high light transmittance. NiFeOx thin films were deposited on fluorine-doped SnO2 (FTO) transparent conductive substrates, and the relationship between the NiFeOx loading amount (Γ) and the OER rate was examined using electrochemical techniques. The OER rate of NiFeOx on FTO (NiFeOx/FTO) was the highest at a Γ value of 0.20 μmol cm−2. To further explore the connection between this optimized Γ and PEC activity, the impact of Γ on the PEC OER performance of visible-light-absorbing α-Fe2O3 semitransparent photoanodes was evaluated as a model system. Applying the optimized Γ of NiFeOx to modify the α-Fe2O3 surface also led to enhanced PEC OER performance. These findings highlight the critical role of surface design, specifically the optimization of cocatalyst loading and electrocatalytic activity, in improving PEC water splitting efficiency, providing valuable guidelines for future semitransparent photoelectrode development.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemNanoMat
ChemNanoMat Energy-Energy Engineering and Power Technology
CiteScore
6.10
自引率
2.60%
发文量
236
期刊介绍: ChemNanoMat is a new journal published in close cooperation with the teams of Angewandte Chemie and Advanced Materials, and is the new sister journal to Chemistry—An Asian Journal.
期刊最新文献
Front Cover: (ChemNanoMat 1/2025) Hydrothermally Synthesized Bi-Cr-Te Nanocomposites With Enhanced Nonlinear Two-Photon Absorption Front Cover: Trichosanthes Cucumerina Derived Activated Carbon: The Potential Electrode material for High Energy Symmetric Supercapacitor (ChemNanoMat 12/2024) Improved Piezocatalytic Performance of Cs/KNN Decorated with CuS Nanoparticles for Dye Degradation Hierarchical Porous Rod-Like In2S3/In2O3 Structures for Trimethylamine Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1