Yong Zhang, Xinping Zhang, Xiong Xiao, Junjie Dai, Wanjing Jiang, Zhen Du, Xuhong Zhan, Lu Liu
{"title":"Modelling the Soil Evaporation Loss in Secondary Forests of the Subtropical Monsoon Region, Central South China","authors":"Yong Zhang, Xinping Zhang, Xiong Xiao, Junjie Dai, Wanjing Jiang, Zhen Du, Xuhong Zhan, Lu Liu","doi":"10.1002/hyp.70056","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Under more frequent, extreme global drought events, the use of stable isotopes to quantify soil evaporation losses (SEL) is of great significance for understanding the water supply capacity from soil to plants. During March 2017–September 2019, we continuously monitored meteorological factors, soil temperature (ST) and humidity, and collected precipitation and soil water stable isotope data. The Craig-Gordon (C-G) and line-conditioned excess (lc-excess) coupled with the Rayleigh fractionation (RL) models were used to quantify SEL in subtropical secondary forests. The results showed: (1) the theoretical evaporation line (EL) slope negatively correlated with air temperature (AT). Water source isotopic values are more positive in autumn and more negative in spring. The aridity index (AI) and soil evaporation loss ratio (<i>f</i>) from both models indicated drier conditions during March–September 2018 compared to 2017 and 2019; (2) comparative analysis showed the C-G model agreed more closely with measured evapotranspiration (ET<sub>0</sub>) and water surface evaporation (<i>E</i>) than the RL model, indicating better suitability of the C-G model in the study region; (3) because the “inverse temperature effect” of the precipitation isotopes, the linear fitting method was not suitable for determining the water source in spring, summer, autumn, and on the annual scale, while the linear fitting method was consistent with the basic principle of soil evaporation in winter. Thus, the theoretical method was more suitable for determining the EL slope in such regions; (4) because of the different fundamentals, the C-G model positively correlated with AT and negatively correlated with relative humidity (<i>h</i>), while the RL model showed the opposite trends, indicating different applicability. The SEL is influenced by soil thickness, atmospheric evaporation and soil water supply capacity. These findings support stable isotope application techniques for quantifying SEL and are crucial for analysis of soil water resources in subtropical secondary forests.</p>\n </div>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"39 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Processes","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hyp.70056","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
Under more frequent, extreme global drought events, the use of stable isotopes to quantify soil evaporation losses (SEL) is of great significance for understanding the water supply capacity from soil to plants. During March 2017–September 2019, we continuously monitored meteorological factors, soil temperature (ST) and humidity, and collected precipitation and soil water stable isotope data. The Craig-Gordon (C-G) and line-conditioned excess (lc-excess) coupled with the Rayleigh fractionation (RL) models were used to quantify SEL in subtropical secondary forests. The results showed: (1) the theoretical evaporation line (EL) slope negatively correlated with air temperature (AT). Water source isotopic values are more positive in autumn and more negative in spring. The aridity index (AI) and soil evaporation loss ratio (f) from both models indicated drier conditions during March–September 2018 compared to 2017 and 2019; (2) comparative analysis showed the C-G model agreed more closely with measured evapotranspiration (ET0) and water surface evaporation (E) than the RL model, indicating better suitability of the C-G model in the study region; (3) because the “inverse temperature effect” of the precipitation isotopes, the linear fitting method was not suitable for determining the water source in spring, summer, autumn, and on the annual scale, while the linear fitting method was consistent with the basic principle of soil evaporation in winter. Thus, the theoretical method was more suitable for determining the EL slope in such regions; (4) because of the different fundamentals, the C-G model positively correlated with AT and negatively correlated with relative humidity (h), while the RL model showed the opposite trends, indicating different applicability. The SEL is influenced by soil thickness, atmospheric evaporation and soil water supply capacity. These findings support stable isotope application techniques for quantifying SEL and are crucial for analysis of soil water resources in subtropical secondary forests.
期刊介绍:
Hydrological Processes is an international journal that publishes original scientific papers advancing understanding of the mechanisms underlying the movement and storage of water in the environment, and the interaction of water with geological, biogeochemical, atmospheric and ecological systems. Not all papers related to water resources are appropriate for submission to this journal; rather we seek papers that clearly articulate the role(s) of hydrological processes.